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ABSTRACT

The purpose of this report is to serve as a work-
ing guide in the construction of acoustic liners for the
suppression of combustion instability in liquid propellant
rocket motors with chamber geometries most often occurring
in practice. The geometry of the liners may consist of
Helmholtz resonators, quarter-wave (or some multiple) tubes,
or half-wave (or some multiple) tubes. Certain optional
design procedures are developed - optional in the sense that
the space occupied by the liner is minimized, subject to
various constraints. A method for the evaluation of the
stabilizing effectiveness of a given design is also presented.
Among the effects considered in these procedures are the fol-
lowing: high amplitude chamber pressure oscillations, both
mean and oscillatory chamber flows, a liner-mean-through flow,
a flow in the liner backing volume (for Helmholtz geometries),
and differences between the mean temperatures, molecular
weights, and ratio of specific heats between the liner back-
ing volume and the local environment in the combustion chamber

(again for Helmholtz geometries).
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NOMENCLATURE

orifice cross-sectional area (dimensional)
constant depending upon j, defined by Eg. (2.3-11)
constants defined in Appendix B |
chamber wall area (dimensional)

defined by Eq. (2.1-2)

constant

defined by Eg. (3.2-12)

constants defined in Appendix B

constant

coefficient of discharge for the orifice

drag coefficient

average jet pressure coefficient

design coefficients accounting for environmental
factors. See paragraph after Eg. (3.2-12)

speed of sound (dimensional)

specific heat at constant volume (dimensional)
orifice diameter (dimensional)

diameter of a spherical liquid drop (dimensional)
nozzle admittance (non-dimensional)

defined by Eg. (2.1-7)

function defined by Eqg. (3.2-11)

constants defined in Appendix B

instability frequency (dimensional)




=

= Ce ta Ll ¥
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=

fraction of chamber wall area occupied by a
partial liner

constant defined by Eg. (3.2-13)
defined by Eg. (2.1-7)

chamber height for rectangular combustors
(non-dimensional), also enthalpy (dimensional)

standardized Bessel function of the first kind
constants defined in Appendix B

integer that gives longitudinal character of
stability mode

droplet drag parameter (non-dimensional)
constant defined by Eg. (B-30)

constant defined by Eg. (A-19) or Eg. (A-39)
orifice length (dimensional)

liner admittance coefficient (non-dimensional)
integer

defined by Eq. (2.2-5)

chamber steady flow Mach number

molecular weight (dimensional)

see Egq. (A-10)

mass flux (dimensional)

defined by Eq. (2.2-5)

interaction index (non-dimensional)

see (Egq. (A-11)

symbol for "of the order of"

amplitude coefficient

pressure (non-dimensional, or dimensional where noted)

amplitude coefficient




S*
vn

defined by Eg. (2.2-11)
Reynolds number
radial distance in chamber (non-dimensional)

inner chamber radius for annular-cylindrical
chamber (non-dimensional)

chamber radius at the injector for conical
chamber (non-dimensional)

chamber radius for circular-cylindrical chamber,
or outer chamber radius for annular-cylindrical
chambers (dimensional)

sur face of integration

eigenvalue describing instability mode. See
Tables (A-1, 2)

non-dimensional distance from pressure anti-node
temperature (dimensional)

time (non-dimensional)

gas velocity (non-dimensional)

mass—averaged liquid velocity (non-dimensional)

orifice gas velocity (non-dimensional), or
chamber velocity in Appendix A (dimensional)

cavity volume for Helmholtz resonators (dimensional),
or volume of integration

chamber velocity in Appendix A (dimensional)
chamber width (dimensional), or
chamber velocity in Appendix A

(dimensional)

length of combustion or chamber length, whichever
is smaller (non-dimensional)

distance from injector along chamber axis
(non-dimensional)

chamber length to nozzle contraction section
(non-dimensional)
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)\*

standardized Bessel function of the second kind

distance along chamber width for rectangular
chambers (non-dimensional)

distance along chamber height for rectangular
chambers (non-dimensional)

growth coefficient for acoustic disturbances
(Pry py/Pp ppp -1)/e

constants defined in Appendix B

parameter AL/V

constants defined in Appendix B

ratio of specificAheats

particle transit times within orifice. Important
only when u # 0. (non-dimensional)

defined by Eg. (3.2-14)
density of a liguid droplet
constants defined in Appendix B

square-root of the non-dimensional chamber
pressure oscillations

ratio of the chamber height to the chamber width
for rectangular chambers

integer giving the radial character of the mode.
See Tables (A-1, 2)

(T, /T =1) /e

circumferential angle for cylindrical chambers
parameter (A\/V)

defined by Eg. (2.3-17) (non-dimensional)
defined by Eg. (2.3-18) (non-dimensional)
wavelength (dimensional)

defined by Egq. (2.3-3), (2.3-6), or (2.3-8)
(non-dimensional)

defined by Eg. (2.3-2), (2.3-5), or (2.3-7)
(non-dimensional)

viii




) = gas viscosity (dimensional)

v = integer describing tangential character of
mode. See Tables (A-1, 2)

£ = ratio of ri/ro for annular-cylindrical chambers
o) = density (non-dimensional or dimensional where noted)
P = liquid concentration in chamber (non-dimensional)
Y = percent open area ratio of actual (partiai) liner
¢ = percent oper area ratio of a full liner

T* = gensitive time lag (dimensional)

@; = constants defined in Appendix B

¥ = angle between direction oflﬁi and.6£

wvn = function defined by Egs. (A-29a or b)

Un = defined by Eqg. (2.2-17)

UA = defined by Eq. (2.2-14)

W = 2m L/\, w* = 2nf

Subscripts

a = spatially averaged value

e = value at start of nozzle contraction section

f = denotes full liner

I = value at injecter, or imaginary part

in = component in phase with chamber pressure

L = value in a region local to the liner surface

L = denotes liquid

m = integer

n = integer, or value at neutral point (M = 0)

out = component out of phase with chamber pressure

P = denotes partial liner

2 = reéonaht va lue
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R = real part

0 = zeroth-order (mean) quantity
1 = first-order quantity

2 = second-order guantity

3 = third-order quantity

I = chamber value

IT = value in cavity volume V
Superscripts

asterisk = dimensional value

arrow = vector guantity

bar = steady-state value

prime = perturbation, or oscillatory quaﬁtity




CHAPTER 1

Introductory Remarks

1.1 Introduction

The purpose of this report ig to aid in the design and
evaluation of acoustic liners for use in the suppression of
high frequency combustion instability in liquid propellant
rocket engines. The basis for the methods presented here
is primarily theoretical analysis.

The geometry of such liners may consist of Helmholtz
resonators, quarter-wave tubes, half-wave tubes, or some
multiple lengths thereof. 1In the underlying theory, there
is no distinction among such geometries; suggestions for
comparison and freedom of choice are contained in the design
procedures.

Chapter 3 contains perhaps the most important informa-
tion in this report. 1In that chapter a design procedure
is presented to select the optimum liner design - optimum
in the sense that the total surface area occupied by the
liner is minimized. Chapter 3 is written so that it is not
absolutely necessary to read any other chapter in the report.
A certain minimal amount of information, that is usually
readily obtainable, is sufficient to provide the basis for
a rather simple design. 1In most instances, this approach

will closely approximate the optimum design. More accurate
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calculations can be performed, but some additional infor-
mation is required. Except for those cases in which an
accurate calculation is required to provide for a liner-
mean-through flow, all calculations can be performed by
hand. These exceptional calculations requireithe use of
a computer to solve simultaneous algebraic equations. A
convenient computer program is provided in Appendix D.

Chapter 4 contains certain classes of problems that are
likely to occur in practice. 1In general, the calculations
suggested in that chapter are more difficult than those of
Chapter 3. It is suggested that one understand Chapter 3
before attempting calculations in Chapter 4.

Chapter 2 contains the underlying reasoning that leads
to the methods contained in the succeeding chapters as well
as the definitions of a number of parameters. There are at
least two reasons why this chapter appears in this report.
The first is to serve as a justification for the methods in

Chapters 3 and 4. For these methods, it is necessary that

-

information from various analytic studies be brought together.

It was felt desirable that this‘amassing be performed at one
location in this report. The second and perhaps more impor-
tant justification is that Chapters 3 and 4 do not contain
all the useful information that can be derived from the ana-
lytical results. It is hoped that these two chapters cover

virtually all problems of practical interest, but there may



be certain isolated problems that connot be handled by these
chapters. Thus, an understanding of Chapter 2 may provide
useful suggestions not contained in Chapters 3 and 4.

Appendix A contains the acoustic-mode solutions for
rectangular, circular=cylindrical, and annular-cylindrical
geometries. It is expected that this appendix will be most
useful for finding the eigenvalue tand thus frequency) and
other parameters that characterize a specific instability
mode. The solutions for chamber pressure and velocity are
also given, but such information will be seldom necessary
in practice.

Appendix B contains the definition of certain constants
as well as certain auxiliary equations needed when a liner-
mean-through flow is present.

Appendix C contains a study much like that appearing
in Ref. (11). The results contained in this appendix are
useful for the developments in Chapter 2.

Appendix D contains a computer program that solves for
the liner response, given appropriate inputs. A full des-
cription of and operating instructions for the program are
also included. The use of such a program will be necessary
when accurate calculations involving a liner-mean-through
flow are necessary, and when certain problems described in

Chapter 4 need solution.

1.2 Scope and Limitations

This report is intended to aid in problems dealing with

specific instability modes. In practice, it very often happens




that a chamber encounters stability problems with more than
one mode. Baffles can be used to suppress some modes and
acoustic liners then used for other modes. Liners may also
be designed for more than one modg. Analytical results pre-
sented in Chapter 2 suggest that liners become more effective
as the tangential mode number increases, as the radial mode
number decreases, and as the chamber Mach number decreases.
Also liners should be more effective for spontaneous insta-
bility than for triggered instability, and the distribution
of combustion helps stabilize the longitudinal modes. Other
suggestions of such general nature can also be found in Chap-
ter 2. Apart from these general guidelines, the decisions

to be made in the choice of the particular modes to be sup-
pressed by a liner are outside the immediate scope of this
report, although the designer can utilize this report in his
decision process.

In employing the design procedures contained in this re-
port, consideration is given to the following effects influenc-
ing liner design: chamber pressure oscillations, a chamber
mean flow, chamber velocity oscillations, a liner-mean-through
flow, a mean flow in the backing volume, and differences in
mean temperatures, ratio of specific heats, and molecular
weight between the fluid in the combustion chamber and the
fluid in the liner Dbacking volume. There are no specific re-
strictions placed on the steady-state operating characteristics
of the chamber, and any instability mode in rectangular , circu-
lar-cylindrical, annular-cylindrical, and conical chambers can

be considered.



1.3 Physical Description of Suppression

The Helmholtz geometry is depicted in Fig. (1.3-1).

Such a geometry consists essentially of an orifice connecting

Chamber Orrfrce Cavity
// ”shv/fy Flow
1/
Chamber N
Flow Mean Flow

Fig. (1.3-1)

the chamber to a smaller volume called the cavity or backing
volume.* Such a geometry is suitable for the discussion here;
however, a more elaborate description is provided, when neces-
sary, in a later section of this manual. The resonant-quarter-
wave tube geometry occurs when the cavity volume is zero and
the orifice length is one-guarter wavelength. The resonant-
half-wave geometry occurs when the cavity volume is very

large compared to the volume of the orifice and the orifice
length is one-half wavelength.

Depicted here is a mean flow into the cavity and through
the orifice, a chamber flow across one end of the orifice, and
cavity flow across the other end. These are some of the effects
considered in this report.

When such a geometry is in the unstable environment with-
in a combustion chamber, oscillatory motion occurs within and
near the orifice. The amplitudes are usually large encugh

(for a given frequency) that flow separation occurs when fluid

*In this report, the dimensionsof the cavity must be
small compared to the wavelength of oscillation




exits from the orifice; i.e., the orifice exit region is
characterized by jet flow. The exit region alternates be-
tween the ends of the orifice and changes twice in one period
(assuming one frequency dominates the motion). The kinetic
energy in the jet is not recovered but is dissipated, and thus,
such jet flow provides a mechanism by which energy from the
ordered oscillations in the chamber is converted into a more
random form. This is the nature of the suppression process.
The presence of a chamber flow (both mean and oscillatory),
a mean cavity flow, and an orifice mean flow complicate the
motion. These complications appear to be more theoretical
than practical. References (1 to 5) should aid the inter-
ested reader in a more detailed understanding of the liner

response and the resulting suppression mechanism.



CHAPTER 2

Design Considerations

2.1 ILocal Chamber Environment

In this section, we present the notation which is to
represent the chamber environment in regions at or near the
position of the liner (local environment). In Appendix A
the acoustic mode solutions are given and these solutions
are expressed in terms of the notation of this section.
Thus, with the help of Appendix A, one could calculate, if
necessary, the flow parameters defined here.

The local chamber static pressure is assumed in the

following form:

— ¥ - 2
Ry = R /B = 1t &Geoset (2.

where subscript {4 denotes local value, the symbol * denotes
dimensional value, the bar denotes steady-state value, and

subscript I denotes chamber conditions. Thus, is the

€
L
square root of the local nondimensional-chamber-pressure

amplitude. This quantity can be further expressed by

L4 2 a
£

where e® is characteristic amplitude for the entire chamber,
and a4 is a guantity that varies with position in the liner.

These two quantities, g and e, can be chosen so that

€ = a°e ' (2.

1-2)




at pressure modes, a = 0, and at pressure antinodes a = 1.

The representation (2.1-1) is harmonic. 1In many cases,
non-harmonic wave forms appear in actual chambers. It is a
property of the liner that its response to certain harmonics
is much greater than its response to others; the liner can be
thought of as a mechanical filter. Thus, even in the presence
of non-harmonic waves (e.g., shocks), the above representation
is adequate in-so-far as the liner response in concerned. In
such cases, one chooses eLa as the amplitude of the dominant

harmonic present in the wave.

Throughout this manual, w is defined as follows

w = 2mL/A (2.1-3)

where L is the length of the liner orifice (thickness of the
liner), and A is the wavelength of oscillation. The non-

dimensional time t is then

= - (2.1-4)
t = t*:ﬁ//cid
where subscript & denotes an average over the chamber volume,

and Ei is the steady-state speed of sound in the chamber.

The local chamber velocity is assumed in this form
72 7 7 73 (2.1-5)
= & ~ o L=
Ty = Up/&y = €4, + &
The symbol - denotes vector quantity and 4+ vector addi-
tion. The quantity ﬁi& ig the steady-state mean flow and does

not vary with time, but will, however, be a function of position
worp

within the chamber. U£&

and is a function of both time and space; furthermore,

is made up of unsteady oscillations,



I &, I = Z, (2.1-6)
l _bl l o 4 = . (2 l 7)
”u = Uy €, cos W+ gy 1N w? .
where | | denotes magnitude. The quantities e, and 9y do not

depend upon time, but may depend upon position in the chamber.
Through the proper choice of these quantities, any phase dif-
ference between the chamber pressure and velocity can be con-
sidered. 1In particular, when e, # 0 and 9= 0, the pressure
and velocity are in phase, and this corresponds to a tangential
spinning mode. When e, = 0 and Iy # 0, the pressure and vel-
ocity are 90° out of phase, and this corresponds to any stand-
ing mode (transverse, longitudinal, or mixed transverse-longi-
tudinal) with no contribution from a tangential spinning féctor.
Any other particular values of ey and 9, are permissible, al-
though, in general, if e, and g, are both non-zero, the mode
will contain both standing and (tangential) spinning contri-
butions.

We let ¥, represent the angle, less than or egqual to 180°,

4

between the direction of EI and the direction of Ui when U/

2 L e’
given by Eg. (2.1-7), is greater than zero (see Fig. 2.1-1).

&

Figqure 2.1-1
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Thus, for purely transverse modes (tangential, radial, or mixed
tangential-radial), the angle Y, is constant and is equal to

90°. For purely longitudinal modes, YL is again constant, but

is now equal to 0°. For mixed transverse-longitudinal modes,

Y& may be a function of time.

2.2 Liner Response

In this section, we present the solution for the gas motion
associated with a lined surface when it is placed in an environ-
ment described by the previous section.

Fig. (1.3-1) and the associated discussion describes the
problem at hand. There are a few details that should be dis-
cussed here. 1In the solutions to be presented, any orifice-
mean-flow and any cavity-mean-cross-flow are assumed to be
constant in time. Such an assumption will be satisfied if
the mean flow into the cavity is choked and is in the direction
as shown. The effect of cross flows in the orifice jet is
represenfed by a mean pressure coefficient Eb , one for the

chamber side of the orifice C

pI’ and one for the cavity side

c

pII® The following paragraph explains how Eb is defined.

Consider a reservoir at pressure P, discharging through
an orifice into a moving stream where, at the orifice exit,
there is pressure Pg and velocity U, both averaged over the
orifice exit cross-section. We define the average pressure

coefficient here as

c, = 2(p-pla vl (2.2-1)
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where U is velocity and o© denotes value in the free-moving
external stream. The value of this coefficient depends upon
the ratio of the orifice momentum flux to that of the external
stream(6). Experimental results suggest that this quantity
should not be greater than approximately -1, nor much less
than about —2(6). In an actual rocket chamber, since the
above momentum ratio does vary in time, some averaged value
must be chosen for quantitative results.

In the solution to be presented, there will also appear
a coefficient of discharge CD for the liner orifices. Such
a coefficient allows for the consideration of certain real
effects when the orifice motion is quasi-steady. Quasi-
steady-orifice motion occurs when the particle stay time in

the orifice is negligibly small compared to the period of

oscillation, or

LT, /,z u® <= 1 (2.2-2)

where u® is the (dimensional) orifice velocity. When this
condition is fulfilled, one can use handbook values for CD.
If not, one should make CD =1, It is difficult to determine
when condition (2.2-3) will be fulfilled in practice because
of the variable nature of u*. However, it is known (from

the results to be presented) that, when Cp <1 (the only
physically realizable case), liner performance is hindered.
Thus, we can obtain a conservative criterion when Condition
(2.2-2) is fulfilled. If the orifice flow does not go quasi-~

steady for the largest amplitudes, then it can't go quasi-
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steady at all. Taking the largest pressure amplitudes (e2)
as near 0.5, the solution to be presented suggests that u*/gI=
0 [Vo.5 ], or conservatively, near unity. Thus, if L/)\ is
less than about 0.1, one should assume that the orifice motion

will be quasi-steady in operation, or for CD’ if

< about 0.1, use handbook value for CD
L/A = (2.2-3)
> about 0.1, use CD = 1.0

For orifices with small L/D, Cp ~ 0.615 for large Reynolds
number. » '
The normal gas velocity on the chamber side of the liner

(at a surface slightly removed from the liner) is first
represented by

- # .. _
“ = /& = ge(a + ) (2.2-4)

where OL is the local percent open area ratio of the liner,
and ¢ ﬁ£ is the local-mean flow velocity through the orifices

*
in the local region. The quantity ¢ u’, is the local-oscil-

L
latory-orifice velocity and is further expressed as

“,e, = /‘!' cos wl — N, sin ol (2.2-5)

All that remains is to evaluate the constants ML and NL as

a function of u, and the parameters in the previous section.

L
Generally speaking, these constants can be obtained as the
result of a simultaneous solution of algebraic equations.

These equations will first be written for a case which is

quite general, although complex. We will then simplify these

&
Note that ¢ is not a local value, but is a characteristic
amplitude for the chamber.
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equations to a form that will maintain generality in practice.
Thus, for a specific liner geometry, a given mean flow through
the liner, and a given chamber environment as described in the
previous section, one can calculate the normal gas velocity

on the chamber side of the liner from the following set of

*
equations. For convenience, we omit the subscript 4 here.

eB‘?,cosqo + (?casw/zri - .S/hw)Mcasw
+ € Nsm*w - €8, = 0 (2.2-6)

6'/43',C‘OJCO + (ﬁ’co:a)/éﬂ‘ - .S/'nw)/Vcosw

— . (2.2-7)
- € U« MJ/’IAGO - € /4/'/ = 0

where 2 = /43/1/ (2.2-8)

The above two equations help to determine the quantities
M and N. Certain auxiliary equations are needed since the

quantities Ai and Bi 5 depend upon both M and N in a com-

’

plicated way. These other equations, as well as the defin-

itions of Ai and Bi 5 are given in Appendix B.

’ ’

Special Case: no liner-mean-through flow, u = 0.

If there is no liner-mean-through flow, the above set
of equations, including all auxiliary equations, can be sim-
plified considerably. In this special case, the following
two simultaneous algebraic equations can be numerically

solved to determine both M and N.

* . 0

We note that this solution applies to near-resonance
oscillations. Oscillations far from resonance are of no
practical concern here.




=14~

2e (1 + lsasswﬁ)ﬁﬁ/éC; - éNﬁ;’/R
/
+ e(anjer - N/RDE + eME/R’ + (2.2-9)
ef - {’%’sesw/é - Ts/mew)M cosw = O
2e (2 +Ico.s"wl)/‘/R/3€: - eME/R
P 3 3 (2.2-10)
~ e(em/er - M/REVE + eN°B/R> -
ez - ea’ym/y, + (%coswfe - msinw)Ncosw
= 0
where the sign [/ | denotes absolute value, and
. 2 2 ’/Z
A= (m* + n?) (2.2-11)

The guantities Fi do not depend upon M or N, but merely de-
pend upon the chamber velocity terms U.,e, and g. When the
chamber velocity equals zero (both mean and oscillatory), all
Fi likewise equal zero. The quantities F, are defined in

Appendix B.

Special Case: resonance with no liner-mean-through flow,
N =0and u=0

Equations (2.2-9,10) can be simplified further, and a
result obtained that is extremely useful in design consider-
ations. From Egs. (2.1-1, 2.2-5), one can see that, when
N = 0, the orifice oscillatory velocity will be in phase with
the chamber pressure. We call this condition resonance, and
the optimum design will operate at (or very near) this condi-
tion. Setting N = 0 in Egs. (2.2-9,10) gives one expression

for the resulting velocity amplitude (obtained from M), and
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another expression that determines the liner geometry under
which this condition is satisfied (resonant geometry). Both
of these expressions are given below, and this special case

is denoted by the subscript n for resonance.

M, = facp‘[a“rf/ag + (% + 23 +

— - 2-1
q"‘/.?)(.l-C,z.) + FZecos,“’(C’FI-f.Z)/z + (2.2-12)
ﬂ‘:lca.sw,,l( 1 - Z"Pz)]/z(.z + l‘cos"wﬁl ) 3’/‘2

(2.2-13)
B = 2¥tapw, + 27€B /M, costw,
where
A, = zeq(j—c,,.z)/d‘?T -+ (2.2-14)

U'_;qca.sfl’(fl,j-f-l)/z

Note that this solution is explicit and no numerical compu-
tation is necessary. In these expressions, three additional
quantities appear which have not appeared explicitly before;

namely, C_, E', and U The first of these is the coeffici-

D o) I1°

ent of discharge for the liner orifices, the second of these
is a mean pressure coefficient that describes the interaction
of a jet with a cross-flow, and the third of these is a mean-
cross—flow on the cavity side of the orifice. These guantities
have already been discussed at the beginning of this section.

It can be proved that, if EéI < 0 (fwhich is the only
physically realistic range), the magnitude of M, can only be
increased by the contributions from EI’ e and g. Thus, a
chamber flow can only increase Mﬂf

Bg. (2.2-13) is extremely useful in design considerations.

When this expression is satisfied, and when there is no liner-
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mean-through flow, the liner geometry will be the resonant
geometry. This expression containg the effects of a cham-
ber flow on the resoconant geometry. Note thé very important
result that, when aﬂ = 0, the resonant geometry only depends
upon the frequency of the instability mode, and not upon the
amplitudes of the chamber pressure and velocity encountered
by the liner. From Eg. (2.2-14) we then conclude that, for
no liner-mean~through flow, the resonant geometry does not
depend upon the instability amplitude when any of the follow-
ing conditions are satisfied. In the following list, any
reference to chamber pressure and velocity concerns only
those local values in the vicinity of where the liner is
placed.

A-1) g = 0; or the chamber pressure is in phase with
the chamber oscillatory velocity. Such a condition occurs
for all purely spinning tangential modes.

A-2) e = 0 and cos | = 0; or the chamber pressure is
90° out of phase with the chamber oscillatory velocity, and
the direction of the chamber oscillatory velocity is at
right angles to the direction of the chamber mean flow.
Such a condition occurs in all transverse standing modes of
circular-cylindrical and annular-cylindrical combustors.

A-3) U= 0 and either e = 0 or g = 0; or the chamber
mean flow is zero with the chamber oscillatory pressure
either in phase or 90° out of phase with the chamber oscil-
latory velocity. Such a condition is satisfied for any purely
spinning or any purely standing mode in regions close to the
injector.

A-4) sin w_ >> e Qﬂ/Mr cos w_,or both sin w_ and e Q /Mr
cos w_ are small, or cos w_ = 0. At least one of these will
occur when w is not near 4 n/2, # =20, 1, 2. . . , the cham-
ber velocity is relatively small (near a pressure antinode -
because of the ordering involved, U_., e and g will be small
or zero), or, because of the orderifig involved, any mode that
has a spinning tangential component, or w = & 7/2, & odd.
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Conditions (A-1,2,3,4) include most cases of transverse
instability in rectangular, circular-cylindrical, and annular-
cylindrical combustors. Conditions (3) and (4) include many
cases of longitudinal and mixed transverse-longitudinal modes
in such chambers. In applying these results to mixed trans-
verse-longitudinal modes, strictly speaking, only those modes
for which the angle | is constant should be admitted (see
Sec. 2.1); however, if condition (4) is satisfied, it is
suggested that all mixed modes can be considered. Also, if
Condition (4) is satisfied, it is suggested that conical cham-
bers be included also.

At a later point in this chapter, we will see that, in
order to provide for a. liner design with optimum damping,
certain requirements must be satisfied. It turns out that
these requirements are such that Condition (4) will be satis-
fied. Thus, for optimum design, for any instability mode in
rectangular, circular-cylindrical, annular-cylindrical, and
conical chambers, the designer need not be concerned With the
instability amplitudes (as long as they are small, i.e., e << 1.)

in finding the resonant geometry.

Special Case: no liner mean-through flow, W = 0, and M = 0O

Another special case of Egs. (2.2-9,10) occurs when M = 0.
In the presence of a chamber flow, the real part of the liner
admittance can be negative in regions not too for from reso-
nance. Theoretical study, to date, has suggested that, in

such negative regions, the liner may behave in a destabilizing
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way. That is, the liner action may provide a mechanism where-
by energy from the chamber velocity field does work on the
chamber pressure field. When M = 0, the real part of the
liner admittance will be zero, and this will provide for a

neutral condition of stability (subscript s below). Thus,

N, t{JC;[—Fcho.s?(E,,I-rl)/z t (2
r e¥3 + 29%/3)(1-3,,) % O lcosw, | ( 2 (2.2-15)

- EPI)]/Z(.Z t Icas’wml)}//z

— ~ 2 (2.2-16)
xR, = e2rlanw, + 277'6_0_/”//\/,,, cos ",

where _ _
nooo= a“’/{z + @ecas%(C’Pz

fz)/z F 2eq( 1 —f,,r)/aﬂ’

Eq. (2.2-15) serves to determine the resulting orifice velocity

(2.2-17)

amplitude. In general, two possible values of Nm can be obtain-
ed - one for N, > 0 (say N+) and the other for N, < 0 (say N_).
In Egs. (2.2-15,17), the upper signs are to be used for N,

and the lower signs for N_. Eqg. (2.2-16) then serves to de-
termine the liner geometries at which this condition will

occur. Note that X = A \/v can only be zero or positive,

so that if a negative value is obtained for a specific value

of Nm’ this solution is physically unrealizable,* If ¥ > M+

(for N+) or if X < ¥_ (for N_), the real part of the liner

admittance will be negative. Positive values of the liner

admittance occur for K_ < ¥ < M+,

*

This is true only for cavities with dimensions small
compared to A,
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Pressure in the Backing Volume

The nondimensional pressure in the backing volume can

be found from

= ¥ /o , (2.2-18)
P, B/B, = 1t €A,

where

,o;j = );(/%coswz‘ + Msinwt ) sinew (2.2-19)

and where M;and Npcan be found by the above methods.

Example Calculations

Figures (2.2-1 to 6) illustrate the solution of Egs.
(2.2-6 and 7) together with the auxiliary equations given in
Appendix B. Such auxiliary equations are necessary only when
u # 0. Both the real and imaginary parts of the liner admit-
tance are plqtted versus X for particular values of w. The
real and imaginary parts of the admittance are given below

in the notation of this section.

‘zﬁl = q@/azf (2.2-20)
a{zj — Oj/‘{,/daé (2.2-21)

We will see in a later section that SR is an important de-
sign parameter and that at any given position in the chamber,

& should be maximized for optimum stability.

R
Figure (2.2-1) illustrates the liner behavior with flow
effects absent. Higher amplitudes lower the peak values of

&R but increase the half-width. The increase of £Rﬂ, with

w is due to the (1 + | cog® w, 1) term in the denominator
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in BEgq. (2.2-12). (£.) will become a maximum when p = n /2

R A
or L/ = n/4, where n is an odd integer. Such a result has
important implications on design.

Figure (2.2-2) illustrates the effect of a discharge
coefficient less than unity. As mentioned at the beginning of
this section, such a coefficient is proper only when the orifice
motion is quasi-steady (w - 0.0). Note that the peak value of
£R is decreased, the half—widﬁh is increased, and larger values

of}SR are obtained not too far from resonance.
Figure (2.2-3) illustrates the effect of a chamber flow.

As noted earlier, Mﬂ(and consequently £_ ) is always increased

Ra
by a chamber flow. Values of X for which SR is negative should
be avoided since, as mentioned earlier, this may lead to desta-
bilizing operation. The external flow components EI' e, and g
affect £R in the same gualitative way, but the quantitative
effects on the maximum and minimum values of £R and the half-
width do differ. Figure (2.2-3 e) illustrates that a particular
flow configuration (and consequently the amplitudes) can change
the resonant frequency (c.f. Egs. 2.2-13 and 14). This figure
also illustrates the asymmetrical character of Egq. (2.2-16),
that an external flow can change the resonant frequency, but
that £R still peaks at its resonant value (this last statement
has not yet been proven in general).

When there is no chamber flow, and the orifice flow is
gquasi-steady (small w), the resonance condition can be satis-
fied only by a very large cavity volume® In other words, in

the limit w=0.06, the orifice fluid experiences no temporal

*In the theory presented here, the dimensions of the cavity
volume should remain small compared to ), This theory suggests
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acceleration (inertia). F®Egs. (2.2~13,14) show that, in

the presence of particular chamber flows, the resonance con-
dition can be satisfied in the quasi-steady case by smaller
cavity volumes. (See Figures (2.2-1 and 3) for an illustration.)
Thus, if any of Conditions A-1 to 4 of this section are satis-
fied, the resonance condition for the quasi-steady case can be
obtained by making the orifice length as small as possible

and the cavity volume as large as possible. The advantage in
this procedure is that the desired condition is obtained in

an asymtotic way so that sloppiness in the design and off-de-
sign operation is of no major consequence.

Figures (2.2-3a and 3¢ ) illustrate that larger values
of (;EpI) enhance the effects of a chamber flow. Such a re-
sult is expected since the aerodynamic "suction" caused by a
cross-flow over the jet then becomes larger.

Figure (2.2-4) illustrates the effects of an orifice

— . = . il
mean flow U and a cavity mean flow U Since a cavity mean

I1°
flow plays a similar role in the formulation as a chamber

mean flow, it is not surprising that its effect is qualitatively
the same as a chamber mean flow. Notice that the mean flow U
does affect the geometry where £R peaks, but that such a peak

is still obtained at resonance (where N = 0). In the quasi-

steady case (w = 0.0), a contact surface always passes com-

pletely through the orifice (see Appendix B). In the unsteady

that, for w very small, such dimensions must be at least of
the order of the wavelength for resonance to occur.
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case (w = 0.1), the contact surface may not necessarily pass
completely through the orifice. The dash-dot-dash lines were
obtained through the use of Egs. (B-3la, 32a). The solid

lines were obtaiﬂed through the use Qf Eq. (B-31b, 32b). As noted
in Appendix B, when the solution can be obtained through the

‘use of Egs. (B-3la, 32a), it is the proper solution. If

not, tﬁen one resorts to Eq. (B-31b, 32b) the dashed curves in
Figure (2.2-4Db) thus ‘indicate the expected behavior.

For particular values of amplitude and frequency, either the

set (B-3la, 32a) or (B-31lb, 32b) can apply exclusively in the

entire region.

Effects of Differences in Cavity and Chamber Environments

Among the important considefations in acoustic liner
response are the effects of differences in mean temperatures
(T) and molecular weights (h) between the fluid in the com-
bustion chamber and the fluid in the liner backing volume.
These effects have been studied numerically in Ref. (7), and
some of those results are reported here.

A number of cases were considered in the calculations.
The quantity B = AL/V was chosen to be 0.1 and 0.01l. The
chamber pressure amplitude (e®) was chosen as 0.1 and 0.25.
Note that these are moderate and very high amplitudes. The
ratio (mI TII/m T_) was chosen to be 1.0, 0.20, and 0.08.

IT° T

Here, subscript I denotes chamber, and II denotes backing
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volume (cavity). For all possible combinations of these
cases, the results can be summarized as follows.

The speed of sound in the chamber can be used as the
pertinent quantity in evaluating liner response. The abové
variations in (mI TII/mIITI) do not appreciably affeét the
geometry at”which the orifice velocity peaks (although the
geometry at which the cavity pressure peaks is greatly af-
fected). The orifice velocity near the maximum value (i.e.,

resonance) is largest when (mI Til/m ) is unity, and mono-

IITI
tonically decreases by no more than 35% when (mI TII/mIITI)
becomes 0.08.

From the above results, we can include such differences

in cavity and chamber environments by a design factor which

allows for a 35% drop in the orifice velocity amplitude near

resonance. In the notation of this section,
= C, (M= (2.2-22)
(M)de.s‘/yn / ( )5 = z
%= %z
with
C = 0. 65 (2.2-23)

7

Another important consideration concerning liner re-
sponse involves differences in the ratio of specific heats
(y) between the cavity and chamber. The effect of such a
difference has an influence on both the governing equation
for the orifice motion and the boundary conditions on the
two sides of the orifice. The effect on the boundary condi-

tions has been studied analytically. Those results suggest
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that such a difference affects both the orifice velocity
amplitude at resonance and the resonant geometry. This
effect on the orifice velocity resonant amplitude and the

resonant geometry can be written as follows

/ J- o
Moo= F eyt o+ (2.2-24)

’{/!’ = 3; + 2z‘anw,,[(7r-AZ;)/z -+ JII?ZA'Z}]CI
Yz /¥ ) (2.2-25)
where J = ZC-Z + lco:awal)/.;y (2.2-26
L = (1-cos2a2,)0(1 - % /%)sme, 647 (2.2-27)

These expressions do not contain the effect of an orifice mean
through flow. The quantities Mr and Mr are those calculated
by means of Egs. (2.2-12,13). The quantity AT, is the parfi—
cle transit time from the chamber side of the orifice to the
cavity side of the orifice. In the quasi-steady case, both

w and AT, become very small, so that Mé and Ré approach Mr

and Mr. In the general case, 0 < A 1T, < m, so that such an
effect can be éignificant. For instance, if we consider

Jy, ~ 0.5, Jp » 1, M_ =~ 1, we obtain Mé ~ 0.4. Thus, a 60%
reduction in the value of Mr is obtained. Since the resonant
geometry is affected by a difference in y, a design based
upon Mr would result in a drop of M which is greater than

60%. For larger ¢, in the above example, the actual M

experience may be only one-half of 0.4.
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Egs. (2.2-24, 25) would be quite complicated to utilize
in practice. For this reason, and since these equations con-
sider only the effect of a difference in v on the boundary
conditions, such a result should be regarded as only a very
general guide in design. From these considerations, it is
suggested that, if in the design problem, Yp # Ypps one
should assume, in a conservative way, that the actual M
obtained be about one-fifth the value calculated without con-

sideration of this effect when w is not small:

i

(77)

desrgn

(2.2-22)
G (M)y
with
I , 43 <about 07

C
2 0.2, 4/y 5> abovt 0.2

(2.2-23)

2.3 Chamber Stability and Design Criteria

In this section are presented the results of certain
analyses that consider the effect of a lined surface on the

stability of a combustion chamber.

Sufficient Damping with Full-length Liners
(8)

Sirignano has studied the effect of a full-length
liner with uniform liner admittance on combustion chambers
with rectangular, circular-cylindrical, and annular-cylindri-

cal geometries.® No liner-mean-through flow was considered

in this analysis. The result that gives the expression for

*This study only considered the explicit dependence of the
liner admittance on the stability, also, the conditions of uni-
form admittance is satisfied only in special cases. The devel-
opments proceeding from Eg. (2.3-21) will supply some justifi-
cation for the use of these results for partial-length liners.
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the growth coefficient of acoustic disturbances (a) is given
below. For rectangular chambers, the reference length isg
the chamber widtﬁ (see Figure A-l). For circular-cylindri-
cal and annular-cylindrical chambers, the reference length
is the outer chamber radius (Figure A-2). Velocity is non-
dimensionalized with respect to the mean chamber speed of
sound, and thermodynamic properties with respect to their

mean static values.

— AR, (n, +2) M fANE

R
]

+ [ xz j;’&g;’ Z(’!)m (j - 0S8 60*2'*)605 4‘77_{__475_3 d/x]//)’-/)‘e
+ LCR/A,-/xe

- j"“" N = - J, :
[o Km)/f(m)(.z + casz;#%e) 4‘]//‘7;'0‘@ (2.3-1)
Z_
+ (w /xe MC/AJ /7‘@
7 _ (27 V] (%7 ' |
(2] - A(E2) ][ Gemesma i oy

where for

(1) rectangular chambers

(m*2 + p*?)" (2.3-2)

2 = 2 ¥ &5 1+ £ f £ (2.3-3)
(mufi T )’/ﬂ

¥ = chamber height/chamber width (2.3-4)



DT

(2) circular-cylindrical chambers

: 4 #
=S,
(2.3=5)
R’ s Xz (:3 1
vy - ® -
( S5y (2.3-6)
(3) annular-cylindrical chambers
¥ * ,
ar o= G, (2.3-7)
& -
/71 _ ) A F(-S:,,') - F(Spg f)
B :' ' ) 2 1 S* ) ; ') 2 ;_ ,S* (2.3—8)
? (‘:’s'-g;')‘ F( o,f (5;’) F( 1)7)
§ = chamber inner radius/chamber outer radius (2.3-9)
The quantity £fR is the real part of the nozzle admit-
tance for the full-liner and is expressed by
= 2 ‘ -
sn o, M/a’e (2.3-10)

where O¢ is the percent open area ratio of the fully lined
surface and M, a, and ¢ were defined in previous sections
of this chapter. The quantity (M/a®) must be considered as

an average value over the lined surface. is the ratio of

Y1
specific heats in the chamber, % the nondimensional angular
frequency of instability, v an integer that describes the
angular dependence of the instability mode (see Appendix A),
Ssn the eigenvalue that describes the instability mode (see
Appendix A), ﬁé the steady-flow chamber Mach number at the
nozzle entrance,/ge the nondimensional chamber length (assum-

ing combustion occurs throughout the chamber), n the inter-

action index incorporated in the Crocco n-7 theory, w* the
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dimensional ancgular freguency of instability, 7% the dimen-
sional sensitive time lag in the same Crocco theory, 8R the
real part of the nondimensional nozzle admittance, k a
droplet drag coefficient (to be discussed shortly), Ei the
nondimensional steady-state liguid concentration, and .x non-
dimensional length measured along the chamber axis from the
injector. The numberSm* and n* describe the type of mode in
the rectangular case and are in turn described by Egs. (A-10
and 11). The integer j is described by Eqgq. (A-9 or 27).
SSﬂ for the full cylinder can be found from Eg. (A-30b), and
for the annular chamber, from Eq. (A-30a). The function
F(B) can be found frbm Eg. (3.2-11). The constant Aj has tﬁe

following definition.

A.= 2 1 &°%° (2.3-11)
] 1, g#o0

Since all acoustic gquantities are proportional to
eat, any term on the right hand side of Eg. (2.3-1) that
is positive (negative) must be interpreted as linearly des-
tabilizing (stabilizing).

The first term of this expression represents the damping
effect of the liner. With proper design, this term can have
the dominant stabilizing effect. ©Note that this term becomes
mére dominant when the chamber-mean-flow Mach number (ﬁé) be-
comes smaller, the liner length (Aé) becomes larger, the per-

cent open area ratio (Of) becomes larger, and when the liner

operates in a near-resonant condition - M then becomes larger.
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Because of the occurrence of ¢ in the denominator, this term
suggests that acoustic liners are more effective against
spontaneous instability than against triggered instability.
Also, in the circular-cylindrical case, since \)/S\";n - 1 as
Vv increases, but for a given v, S:ﬂ increases as mn increases,
the higher the tangential mode number v and the lower the
radial mode number 1 (for a fixed v), the more effective the
liner will be. Thus baffles may be used for the modes for
which liner effectiveness is less (in cases where the room
for a liner is restricted).

For longitudinal modes of oscillations, & = jﬂ/xe, and
the second and last two terms combine to yield the negative

(stabilizing) guantity
%
- [); M, t 5(1{—2)]50 ‘T r)sin2 & a//x]//xe (2.2-12)

This implies that distribution of combustion tends to stabil-
ize the longitudinal modes. For purely transverse modes,
j = 0, and these terms are simply —(YI + 1) EE/ZAE which is
a stabilizing quantity due to the mean nozzle flow and is
independent of the combustion distribution. In general, these
terms are most important as stabilizing quantities; usually,
only the acoustic liner term is more important.

The third term represents the driving mechanism provided
by the combustion process (according to the sensitive time lag
theory). Calculations that will aid the designer in evaluating

n and 7% can be found in Ref. (9).
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The fourth term containg the real part of the nozzle
admittance coefficient. Often, it is positive for first
tangential mode oscillations, indicating that the nozzle
has a destabilizing effect for that mode. Calculations
indicate that 8r/Mé can be of order unity in certain cases.
In these cases, the effect of the nozzle will be important
compared to the other effects present. In other cases,
calculations show that this term is negligible compared to
unity and has, therefore, negligible effects upon instability
(except perhaps in marginal cases where o is very small).

One cannot neglect the significant changes in the stability
characteristics of an engine that can be achieved through
modification of the nozzle design.

The fifth term describes the damping effect due to drop-
let drag. The drag parameter k is defined by

ED'E?: = k(&% -9 ) (2.3-13)

-
where GL is the liquid velocity, and U. the gas velocity

I
in the chamber. An estimate of kK can be made by considering

the drag of a spherical body, which gives

K = 3pC Ref7dS, (2.3-14)
where Cq is the drag coefficient, dL is the sphere diameter,
SL is the density of the liguid, p is the gas viscosity, and
Re is the Reynolds number based upon the gas properties and
the relative velocity. For purely transverse modes, 7 = 0,

and the damping added by droplet drag becomes



-31~

[L% KA o/¢]/2 e (2.3-15)

On the other hand, for purely longitudinal or mixed longi-
tudinal-transverse modes, with the combustion concentrated
near the injector face, the damping will become exactly
twice the above value. Axial spreading of the combustion
zone tends to reduce the damping; however, this spreading
may not be undesirable since the third term shows that such
spreading also decreases the combustion response.

It is clear that the minimum amount of liner damping
necessary is such that the right-hand-side of Eq. (2.3-1)

be slightly negative.

Specializing to a Special Class of k(x), EI(X), and Ei(x)

The integrals appearing in Eg. (2.3-1) can be determined
if the designer knows the steady-state axial variation of
EI(X), EL(X), and k(x). For purposes of concreteness, we

make the following assumptions concerning these functions.

K(me) = K | conslan? (2.3-16)
1 e
7 = M, - 2.3-17
U.Z(”‘) Me 7 - o R, e ( )
) % (xe-2)
Gy = oo~ "= { (2.3-18)
‘ Uiz ee%e _ 7

Here, subscript I denotes conditions at the injector , and

subscript e denotes conditions at the nozzle entrance. The
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constants ¥, should be known for a particular application.

(lo), If

Generally speaking, Ml should be around 1 or 2
there is nothing known by the designer about Hz, then choosing
Hz = Ml is probably not too bad in view of the uncertainties
already present in k. The quantity ELI is the steady-state
mass averaged liguid propellant ipjection velocity divided by
the average chamber speed of sound.

With these assumed functional forms, the condition for

minimum liner damping becomes

AR s = - (o, +1)/A,fxe
% em(l-cosm’t’)[l-(l) R#QJ

“ e (l‘ewe)[l r (22)]
e

. 2
# Ve iz

+

_ _h K Fe 4
.

- 44,(1 + S;)

(2.3-19)
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where

5 = . (2.3-20)

Maximum Damping with Partial Liners

The above expression for minimum liner damping was
based upon an analysis that assumed that the entire length
of the chamber was lined and that the liner admittance was
uniform. Only in rare cases would it be necessary to in-
stall a full liner, and even then, the liner admittance
might not be uniform. It is thus necessary to understand
effects that are local to the lined surface. With this in
mind, we turn to the approach of Cantrell and Hart(ll).

In Appendix C, a criterion for the maximum damping possible,
at each point of the lined surface, is obtained, based upon
a method developed in Ref. (11). The result obtained is
the following

.Lja’s{o'/e[a‘ﬂ/); + & (Me - Ng) + a'zc'('R'z]}

. (2.3-21)
= maxrmaem

All of the guantities within this surface integral, except
for ¢ are local values. All gquantities have been defined
in previous sections of this chapter (see also the table of
nomenclature). The maximum value of this integral must be
positive for stability.

Clearly, the surface integral will be maximized when
the integrand is maximized at every point on the surface.

This, however, is not the proper approach to be taken here.
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We are interested here in how to utilize a liner most
efficiently, i.e., how to construct a liner that will pro-
duce maximum damping. More specifically, the question be-
comes: What is the optimim liner geometry and the optimum
liner placement? The answer to this question lies in find-
ing the specific liner geometry and the specific location

in which the above integrand is maximized. The problem then

becomes

a[a‘M/rz + F(Me -Ng) t+ o2@R*] = maximum (2.3-22)

and the maximization (for positive values only) is to be
achieved by finding the proper position in the chamber and
the proper liner geometry.

In deriving the last expression, all of the guantities
involved are considered to be of order unity or less. We
now look into more detail as to the proper ordering. For
any given‘position in the chamber, we know from the results
of Sec. (2.2) that for some liner geometries, both M and N
will be of order unity, and these are the largest magnitudes
that they can obtain. For validity of the analysis presented
in Sec. (2.2), u must be of order unity or less. In practice,
6® << 1. 1In order to consider the relative magnitudes of a,

U e, and g, we separately consider first two cases that

II
often occur in practice; namely, standing tangential and

spinning tangential waves.
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We first consider standing waves. In this case,

we
have in nondimensional form

P; = &cosa coswl = 2?e®cos w?

M, = Y e
4
(%), = o = eecosw?
((/1’_’) = €2 Bsinasinwt = gesinwt

oue

where a prime denotes oscillatory component, subscript "in"

denotes in phase component, subscript "out" denotes out of

phase component, MI is the chamber mean flow Mach number

(which is of the order of the maximum pressure oscillation

(e®)), and A4 is distance from the point where the pressure

oscillations are largest. The constant B is of order unity.
We thus obtain

(78 = J cos _a
g = 0OCe)
e = 0

g = €B8sirna

Expression (2.3-21) then becomes

J{O[.)cos,a. M] + Ole?BsinaN] + 0[0"":‘?2]}

e
pmech

(2.3=-22)
ma X 10 d 17

As .o is varied in this expression, only the first two terms

change; the first of these becomes smaller, and the second
becomes larger. Since e << 1, the optimum value of 4 is
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very near zero. Furthermore, since g << 1, the optimum
geometry is such that M is maximized. The calculations pre-
sented in Sec. (2.2) show that, when the liner is placed near
a pressure antinode (velocity effects are then small), the
quantity M becomes maximum when the liner geometry is the
resonant geometry.

For purely spinning (or travelling) waves, any given
position in the chamber will experience both maximum pressure

and velocity oscillations. The ordering now becomes

2
A = €cosw? = a’e?coswt

My = Ure

(), = €°Ccosw? = eecosw?
('), e 0o = €gqoinwl
or
73 = 1
y, = Oce)
e = QOce)
g =0

Expression (2.3-21) then becomes

L

o [ocM) + Oce*M) + OCo?R?) ]

ma X /mum (2.3-23)

So that, ideally speaking, liner placement is inconsequential,
and M should be maximized. Calculations of Sec. (2.2) again
show that for this ordering, M will be maximized when the
liner geometry is the resonant geometry.

The above conclusions concerning liner placement can be

stated more simply perhaps in words. It is known that, in a
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combustion chamber, the maximum pressure oscillations are

of the same order of magnitude as the maximum velocity oscil-
lations. For standing modes, both maxima appear at differ-
ent positions, whereas for spinning modes, any position
experiences both maxima. The quantities ﬁi, e, and g were
defined in such a way that the chamber velocity would have

to be an order of magnitude larger than the bscillatory
pressure in order for these quantities to be of order unity:
furthermore, only a product of these terms appears in Ex-
pression (2.3-21). Thus, the effect of a chamber velocity
must be small compared to that of the pressure, and there is
no benefit obtained in moving away from a region of maximum
pressure oscillation towards that of a maximum velocity
oscillation (or even maximum chamber mean flow velocity).
Reasoning in this way, we would expect that, in actual com-
bustors, no matter where an oscillatory pressure maximunm
occurs, this is where the liner should be placed. This con-
clusion is important since it is observed that axial &ariations
in "maximum" pressure amplitude occur: the largest obtained
being near the injector.

We note that the above conclusions were obtained inde-
pendent of the angle § (see Sec. (2.1) ). Thus, the above
results are intended for any mode in rectangular, circular-
cylindrical, annular-cylindrical, and conical chambers.

The main conclusion of this section is the following.

For all cases of practical concern, the most efficient




operation of a liner can be achieved by constructing the
liner such that its geometry is the resonant geometry, and
that its placement is in the region where the oscillatory
pressure amplitudes are the largest.

The above suggestion for optimum performance can be
carried out only when there is suﬁficient freedom in the
variables of liner geometry and liner placement. In some
cases, one or both of these variables will be confined to
certain limits. If the liner position is restricted, and
the liner connot be placed in a region where the oscillatory
pressure amplitudes are maximum, one must not conclude that
the optimum geometry is the resonant geometry. Also, if the
liner geometry is restricted, one should not conclude that
“the optimum placement is still as above. The most general
approach to be taken is that Expression (2.3-21) be satis-
fied, whether or not constraints are imposed on the design.
Chapter 3 considers the case where no essential constraints
are imposed, and Chapter 4 considers special problems where

constraints do exist.

2.4 Rationale for Design Procedures

The main ideas underlying any design procedure have
been presented in the previous sections. There are, how-
ever, a few comments that need to be made.

In Section (2.3) a criterion was presented that is to
give a measure of the minimum amount of liner damping necesg-

sary for chamber stability. This criterion was based on an

=38 -
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analysis Ehat considered a full liner with uniform admittance
in which there is no liner-mean-through flow. Since, in
practical applications, it will usually not be necessary to
fully line the chamber, we represent the percent open‘area

ratio of the full liner (Gf) by the following

o = £ o (2.4-1)

where fL is the ratio of the lined-surface area divided by
the chamber-wall area. The latter area is the area occupiéd
by the full length liner in the analysis. The quantity ¢ is
the percent open area ratio of the actual liner.

From Expression (2.3-21), it was found that, when opti-
mization is desired, a mean flow through the liner does not
have an explicitly significant result on damping since, in
virtually all cases, 7™ << 1. Thus, even though the minimum
damping criterion (2.3-19) does not consider such a mean flow,
this expression should be valid in optimization problems
where u # 0, as long as the implicit dependence of u on M is
considered.

From the results concluded from Expression (2.3-21), the
designer possesses a guideline as to the conditions under
which partial-length liner damping is maximized. If this
guideline is carried out, the partial-length liner will have
locally uniform admittance with percent open area ratio 0.
Then from the criterion of Sirignano (Sec. 2.3), writing
e = fL 5, a measure as to the effectiveness of the optimum

partial-length liner on stability can be evaluated. Thus,
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a procedure for optimum design becomes evident, and this
is presented in Chapter 3.
In some cases, an optimum design cannot be achieved.
In these cases, an effective liner can still (usually) be
constructed, and its effectiveness determined from the
methods of Sec. (2.3). These latter cases are usually more
difficult to handle, and techniques for the solution of a
few most common of these problems are presented in Chapter 4.
The optimum design procedure will require that the liner
operate in resonance. This means that the liner configuration
should not change the frequency of the instability mode. How-
ever, for off-resonant designs (to be discussed in Chapter 4),

such a modification must be considered.



CHAPTER 3

Optimal Design Procedure

The procedure suggested in this chapter is intended to
provide a method for the selection of a liner that will supply
a sufficient amount of damping in such a way that the total
surface area occupied by the liner is minimized. This pro-
cedure consists of starting with certain known chamber pafam-
eters (chamber geometry, type of instability mode, etc.) and
then determining requirements for the liner geometry and liner
placement. More specifically, the procedure is to satisfy
three conditions simultaneously. The first of these is a re-
quirement placed on the liner geometry in such a way to assure
that the liner operates in a resonant condition. The second is
a requirement on the hole-area and total lined surface area in
such a way to insure that the liner provides sufficieﬁt damping.
The third is a requirement on liner position in the chamber.

From Sec. (2.2), it can be shown that the %-wave geometry
(L/» = 1/4, V = 0) contains the minimum volume for resonance.
This usually means that the lined surface area is minimized for
this geometry. Even so, because of other practical considerations,
we maintain generality here by allowing Helmholtz resonators
(Vv # 0) as well.

In certain special cases, the three conditions present
cannot be satisfied simultaneously. Perhaps the most fre-

guently occurring of such cases is when the design suffers

-4 -
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volume~limitations;: i.e., there is not sufficient room in
the chamber to provide enough backing volume as suggested
in the procedure. 1In these latter cases, a liner design
may still be found that utilizes the backing volume avail-
able and still provides a sufficient amount of damping.
Such problems as these are considered in Chapter 4.

The outlined design procedure applies to any instability
mode in any rectangular, circular-cylindrical, annular-cylin-
drical, and slightly conical (cone half-angle less than about
6°) combustion chambers. Other conical chambers can be handled
by this method, but in a more approximate manner. There are
no restrictions as to the type of liquid propellants, and to

the particular steady-state operating characteristics.

3.1 Design Variables

LI LI Al vl

g, and liner position. fL is the ratio of the total lined

The design variables are the following: £

sur face area (AL) to the chamber wall area (Aw); fL = AL/AW.
For rectangular chambers, the chamber wall area is defined

as follows:

i

A, 2(w + A7) x*

where w is the chamber width, h the chamber height, and X*

is the length along the chamber axis in which combustion
occurs,. The nozzle admittance condition should be applied

at the end of this length. This length can usually be taken as
the actual chamber length, i.e., the distance from the injector

to where the nozzle contraction oecurs. For circular-

cylindrical and annular-cylindrical chambers, the wall area
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is defined as follows:

A, = 2z2mpepX®
where ry is the radius of the outer wall and X*is defined
as above. For conical chambers,

Avw = 7(5+ )X
where X* is as defined above, r} is the radius at the in-
jector, and r; is the radius at the axial distance X* from
the injector. These definitions for'Aw and fL are inde-
pendent of the position of the actual liner. L is the length
of the liner orifices (liner thickness). 1In cases of a par-
titioned backing-volume, V is the volume of a partitioned
section and A is the total orifice cross-sectional area
associated with that section. For non-partitioned backing-
volumes, where the orifices are evenly spaced on a local
scale, A is the cross-sectional area of a single orifice,
and V is the totél backing-volume, in that local region,
divided by the total number of orifices in that local region.
Any cross-sectional geometry is allowable for the orifice
holes, although the cross-sectional area should be constant
with distances along the orifice axis. On a local scale, ©
is the fraction of the total orifice hole area to the total
liner surface area. The dimensions of the volume V must be

small compared to the wavelength of oscillation.

3.2 Design Procedure: Case I, Small Liner-~-Mean-Through Flow

The procedure in this section is intended for those

cases in which the liner-mean-through flow velocity is zero,
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or sufficiently small. See Section (3.3) for suggestions as
to what is meant by sufficiently small. The only difference
between the procedure of thig section and that of Section
(3.3) is in the mechanics of certain calculations. The
minimal amount of information necessary for this section is
the following:

1. chamber geometry

2. type of instability mode

a. the integer j that describes the longitudinal
character of the mode (see Appendix A)

b. for circular-cylindrical and annular cylindri-
cal chambers, the integer v that describes the
tangential character of the mode, the integer
n that describes the radial character of the
mode, and the corresponding eigenvalue S*

(see Appendix A) VT

c. for rectangular chambers, the numbers n* and
m* that describe the transverse character of
the mode (see Appendix A)

3. the position in the chamber where the maximum un-
stable pressure oscillations occur

4. the chamber steady-state speed of sound EI

5. the ratio of specific heats in the chamber Yi

6. the steady-state Mach number of the flow at the
nozzle entrance Mé

7. for designs that result in short orifices; namely,
those for which the orifice length to wavelength
ratio is less than about 0.1, the coefficient of
discharge for the orifices CD

8. whether or not the molecular weight, the ratio of
specific heats, or the mean temperature in the
backing=volume will differ from the corresponding
value in the chamber in the vicinity of where the
liner is placed (which is at that position known-
from Item (3) ).

The above information is usually available to the de-

signer, and is sufficient for a calculation that will provide
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for a fairly accurate design. For more accurate calculations,
the following additional information is necessary:

9. exponent X, that describes the steady-state Mach
number varlations, and the exponent X, that describes
the steady-state liquid concentration®along the
chamber axis. (see Egs. (2.2-16,17)

10. the chamber interaction index n and the sensitive
time lag t* (sec~1) incorporated in the sensitive

time lag theory of Crocco, or their equivalent

11. the real part of the nozzle admittance 6R (non~
dimensional

12, an average droplet drag parameter kK (non-dimen-
sional)

13. the mgss—ayeraged liquid injection velocity ELI
(nondimensional) .

Since the steady-state values of the chamber speed of
sound EI’ and the ratio of specific heats Yp vary along the
chamber axis, the following discussions will contain these
quantities with either of two subscripts, a and 4. Sub-
script a will denote a value averaged over the chamber volume,
and subscript £ will denote a value in the region whefe the
liner is placed.

The quantities j, v, mn, Ssn , m*¥ and n* are discussed
in Appendix A, and Tables (A.l, 2) should prove to be use-
ful on this score.

The instability frequency # can be measured in firings
of the test hardware and/or calculated from the knowledge of

Ttems (1) and (2). For rectangular chambers, this calculation

becomes*

* .
For a more accurate calculation of this frequency, see
Egs. (A- 40, 41).
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F T G jm“ + n*t o+ 441 «ﬁj}@@gﬁj/gyw (3.2-1)

where W is the chamber width, and 7, is the actual chamber
length plus two-thirds the nozzle contraction length all
divided by w. In this equation and in what follows, any of
the two transverse dimensions can be considered the chamber
width, although consistency must be maintained. In general,
m* and n* will depend upon this choice. For circular-cylin-
drical and annular-cylindrical geometries, the calculation

is *

- 2 : — ' -
F o= 5. S5+ m4ACa - Al Al J27n (3.2-2)
where ry is the outer chamber radius. The oscillatory wave-

length A can then be found from

a = Cm/,c (3.2-3)
In this section, we have reserved comments on conical
chambers until now. For such geometries, it is suggested
that they be treated as circular-cylindrical geometries with
radius r, = (r

+ rX)/2, where both r_ and r, have been de-

I I

fiﬁed in the previous section. If the cone half-angle is
less than about 6°, such a treatment should yield results
with accuracy consistent with other aspects of the problem.
For larger cone half angles, it would be desirable that the
eigenvalue Ssﬂ be calculated from Eg. (3.2-2), where f is
known from test firings. The quantity,%é will then be the

combustion length X* plus two thirds any remaining length

* * 3
For a more accurate calculation of this frequency, see

Eqs. (n-40, 41).
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to the minimum area (throat), all divided’by the above L
The Mach. number ﬁé should then be that value at station X.
The numbers J, v and 1 will always have the same meaning as
in the circular-cylindrical case.

The constants Ml and MZ are defined in Egs. (2.2-16, 17).
Generally speaking, for hydrocarbon combustors, Ml,should be

2.0(10)

in the range 1.0 - . As already mentioned in Sec. (2.2),

one might choose HZ = Ml. One should consult Ref. (9) for the
calculation of n and t*. Typical values for the real part of
the nozzle admittance BR and the droplet drag parameter k are
discussed in Sec. (2.2).

The design procedure consists of satisfying the follow-

ing three conditions simultaneously:

I-1) choose any value of A, L, and V such that*

AANV = 27 tan(2wli/2) (3.2-4)
I-2) choose any value of L, f;r,and o such that

a.) for rectangular chambers

€e Cax z 3.2-5)
o = 2% Ga GGM 1 + ¢ d (

where § = chamber height/chamber width (3.2-6)

b.) for circular-cylindrical chambers

€. Cxp _ [? ) (3.2-7)
o > You Con Cy Co 77 [1 (E,f;)]G

*The dimensions of the cavity V (for Helmholtz resonators)
must be small compared to the wavelength in order that the
theory be applicable.
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c¢.) for annular-cylindrical chambers

P €o Ere [A(Som) — F(5:5)] G
LS = 7 z (3.2~
KICQCC‘M [._2—-2_1'} & — Y _1;55 (5.4 8)
B M (6 T L G AR S
where
E = chamber inner radius/chamber outer radius (3.2-9)
In the above expressions
M o= {3ctn/lze,(1+ | cos’Czrt/a)l )J}VZ (3.2-10)
= o
Fly) = ;,—;)g(r)lﬂa/[.];(;) + B*)’,,(g)] (3.2-11)
and J oy
v - _ 9 - .2-12
B dr ‘7;(,)!’-';5;;{ dr Y‘D(/’)’r_;‘s;.’f (3 12)

where JV and Yv are the standardized Bessel functions. The
coefficients ¢y and C, are defined as follows. If the mean
temperature and/or the molecular weight in the backing volume
differs from that in the local chamber environment, take

Cc. = 0.65, otherwise, take C, = 1.0. If L/A < about 0.1,

1 1
take C2 = 1.0, otherwise choose C2 from Fig. 3.1 below.

10 -
0.8 -
¢, 06 ]
0 -
.2 -

o . v . v ¢ .

O o2 oFf 06 08 10 fP?

333£°”?%£i
égk,/z,g

Figure 3.1

The quantity G is defined as follows:
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G = - (bf%a “f'i)/t%;//qjx ”’f"’E/ﬁX et fﬁ mg/ijx
Yoo Flg m (1 = cosc™z*) 7 j’
+ ' G & R 1
Aix(2 - e'kx)[z )] ¢ )
2A; X Ux % (e”‘x‘l) 1+ Z;Z J
Z
4/7)[142 ],_, 1)
.2-13
2JIT\E
arx[xF + (557 ) ]
_ 1, g=o0
5 = o, sfo (3.2-14)
A; = f’ j:z (3.2-15)

For rectangular chambers, X is the ratio of the quantity
X* defined in the previous section to chamber width {w), and
B = w* W/EIa‘ For circular-cylindrical and annular-cylindri-
cal chambers, X is the ratio of X* to the chamber outside rad-
ius (ro), and @ = w* ro/EIa' For designs with the shorter
orifice lengths (L/\x < 0.1), Ch should assume the value of
the steady flow discharge coefficient for the orifice; other-
wise, CD should be taken as unity.

The quantity €5 in the above expressions is the square

root of the non-dimensional spatially-maximum oscillatory

pressure amplitude that occurs in the chamber, and to retain
the validity of the underlying theory, should be small com~-
pared to unity. For spontaneous instability ¢ will be small
whereas for triggered instability e will be relatively large.
Generally speaking, one should expect that 0 < €6 ; 0.3. Por
a conservative estimate in this expression, one should choose

the larger expected values of €5
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1-3) place any lined surface in areas at or very near
the regions where the unstable pressure oscillations are

largest.

3.3 Design Procedure: Case II, Non-Zero Liner-Mean-Through-Flow

The design procedure presented here is fundamentally the
same as that appearing in Section 3.2. The only difference
is that Egq. (3.2-4) cannot be used to precisely find the reso-
nant geometry and Eq. (3.2-10)is no longer valid. If the al-
ternate solution éuggested here appears too difficult, one
might still use the previous procedure even in the presence
of a liner-mean-through flow. The calculations and figures
provided in Sect. (2.2) suggest that such a simplification
yields good results at least for mean flows that are not ex-
cessively large. If the quantity u, calculated below, is
less than about 0.3, the error in such a simplification
appears to be less than about 10%. Values of w are restricted
here to 0 < w <€ 0.3,

The alternate (more difficult) solution suggested here
involves the numerical solution of simultaneous algebraic
equations. In addition to the quantities listed in the pre-
vious section, the orifice mean flow velocity and a chamber
pressure amplitude must be known. If u* denotes the actual

dimensional mean-flow-orifice velocity, one obtains

— — =g ey
174 == “/ECJ,K
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where u is the parameter to be used in the calculation and

e is the square root of the characteristic pressure amplitude
for the chamber (see Eq. 2.1-2). To comply with the theory,

¢ should be a number much less than unity and u should be,

at the largest, of order unity, but smaller than R cos w.*

For spontaneous instability ¢ will be small, and for triggered
instability € will be relatively large. One should perform
the calculations in Condition (II-1) for a few specific values
of ¢ and then choose the most reasonable value of e¢ that gives
the smallest (conservative) value for M. Generally speaking,
reasonable values for ¢ would be such that 0 < ¢ < 0.3. The
design procedure then is to satisfy the following three con-
ditions simultaneously:

IT1-1) The following set of algebraic equations must be

solved simultaneously for the special case N = 0. Because of

Conditions (II-3), the chamber flow terms in these equations
- ——m

can be neglected, i.e., UI ~ UI ~ Ui ~ e~ gw= 0. This spec-

ial case is denoted by ( )o.

casw(ﬁzﬂ)o + (Rcoswferr - Sinw)cosw Mfe -
(ﬁQ,A, = Q0

(3.3-1)

cosw(Az,,)o - sinfwaM - (A, 1, (3.3-2)

The constants Ai . and Bi 5 are defined in Appendix B. There

[ 14

are certain other auxiliary relationships that must be

*Since the amplitude R is a function of u, one does not
know a ‘priori whether or not W is greater than R, How this
difficulty is treated in the computer program is explained
in Appendix D.
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satisfied together with the above two equations, and these
are also presented in Appendix B. 'A suitable computer pro-

gram is provided in Appendix D.

For any given value of the design variable I (which
appears in w = 2m L/\), the above two equations determine
the design values of ¥ = A)\/V and M. Thus, similar to Con-
dition (I-1) of the previous section, this condition provides
a relationship among the design variables A, L, and V. Any
selection can be made for these variables, provided that the
proper value of ¥ (which depends upon L) be satisfied. *

II-2) The same as Condition (I-2) of the previous sec-
tion, except that the quantity M is now that quantity calcu-
lated in the above step and not the quantity defined by Equa-
tion (3.2-10) in Condition (I-2).

III-2) The same as Condition (I-3) of the previous

section.

3.4 Suggestive Comments

From Condition (I-2), one can see that the required lined
area initially diminishes as the orifice length L becomes
significant compared to the wavelength, and approaches a mini-
mum when w =~ nn/2, or L/A ~ n/4, with n =1, 3, oad. The
resonant geometry in such cases consists of quarter-wave or
multiple~quarter-wave tubes. In reference to this fact, the
designer should be aware of certain practical considerations.
In general, as the orifice length approaches these optimum
values, the liner response becomes more and more sensitive to

the liner geometry. When the orifice length is very small

*
See footnote on Page 47.
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(L/A = 0), the liner response is virtually insensitive to
the actual value of L.* Condition (I-1) then requires that
the ratio A\/V = O or that the cavity volume is large in
comparison to the area A. On the other hand, when L/\A ~ 1/4,
the actual value of L/\ becomes very important. Thus, if
there is considerable doubt in the value of the wavelength
of oscillation, significant erosion occurs in the liner mater-
ial altering the orifice dimensions, or if any other hard-to-
define factor introduces considerable uncertainty in what the
actual values of L/A and A\/V will be, it is suggested that
the designer not attempt to exploit this optimization for
the larger values of L. In such cases it may be advisable
to design for the cases where L/\ =~ 0 in that this results
in a "safe" design, i.e., one that does not depend in a very
sensitive way upon the actual liner geometry. Another altern-
ative would be to select the proper design that would provide
for any uncertainty in L, A, étc. This alternative would,
however, require more involved calculations to determine the
limits of parameter variations, and this added complication
must be justified by the amount the liner-surface area is
reduced. In Chapter 4 suggestions are provided for accomplish-
ing this alternate solution for designs with considerable un-
certainty.

The above design procedures require that the lined surface

be placed in regions where the unsteady pressure oscillations

%
The resulting large bandwidth overshadows moderate
variations in L.
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are largest. For the case of spinning modes, it has been
observed that such oscillations usually are maximized in tﬁe
region close to the injector and at the chamber wall (injector-
chamber interface). For longitudinal modes, regions near the
injector will also experience the maximum pressure oscillations,
although such oscillations will also occur in distinct regions
along the chamber for the higher modes (see Appendix A). Some
asymmetrical property of the combustion chamber is necessary

in order that standing transverse modes exist. For instance,
the presence of baffles or non-uniform mass distribution across
the injector face might serve to establish a particular mode.
In all cases, direct pressure measurements in the actual test
hardware are necessary to establish the location of such pres-
sure maximums. Knowledge of the acoustic solution (Appendix A)
is highly desirable in locating oscillatory pressure maximums.

In many cases, the designer cannot, or does not want to
accurately calculate the guantity G in Egqg. (3.2-11). 1In such
cases, it is useful to know that G = b ﬁe’ where b is a num-
ber that should not be much larger than approximately three.

As mentioned earlier, the above design.procedures are
intended to produce a design which will provide for a suffici-
ent amount of damping with the minimum amount of liner-sur-
face area. Conditions (I-2, II-2) serve to insure that the
liner damping is sufficient, whereas Conditions (I-1, I-3,
TI-1, IT-3) serve to minimize the lined-surface area. In some

applications, minimization cannot be achieved. For instance,
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because of geometrical constraints, it may occur that the
liner can not be placed at the position where the pressure
oscillations are largest, but instead, it must be placed

in regions where chamber-velocity effects become important.
Another example is in volume-limited situations, where, in
order to provide for enough damping, the backing-volume will
not be sufficient in order to satisfy Conditions (I-1 or II-1).
In special cases such as these, a sufficient amount of liner
damping may still be achieved, i.e., Conditions (I-2 or II-2)
can still be fulfilled. One might then ask, given certain
constraints, i.e., volume limitations, liner-placement re-
strictions, etec, what would be the liner design that would
contain the optimized amount of lined-surface area. Another
possibility is that the designer is not interested in opti-
mization at all, and merely wants to evaluate the performance
(determined whether or not the damping is sufficient) of a
given liner with a given position in the chamber. Problems

such as these are discussed in Chapter 4.

3.5 Example Problem

Problem: Design an optimum liner configuration for a
circular-cylindrical chamber with radius r, = 1 ft. The
length of the cylindrical portion is 1 ft. and the contraction

% ft. The combustion length is equal to

section has length
the length of the cylindrical portion. It is observed that
a second tangential spinning instability occurs with the max-

imum pressure oscillations occurring at the injector-outer-

wall corner. The average speed of sound in the chamber is
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2,000 ft/sec, and the speed of sound near the injector is

1,500 ft/sec. The average ratio of specific heats is 1.2

and that near the injector is 1.3. The Mach number at the
beginning of the nozzle contraction is 0.2. Assume the follow-
ing values: X, =¥, = 2.0, n = 0.6, 7% =5 x 1074 sec., e = 0.4,

€E_ = 0.1, U = 0.1, k = 0.1. Practical considerations re-

I LI

quire that the cavity environment will be cool so that values
for the molecular weight and the ratio of specific heats in
the cavity will differ from those in the chamber. Practical
considerations also require that the orifice length be no
smaller than about % inch and no larger than about 1 inch.

Preliminary Calculations: From Table A-1 in Appendix A, the

following values are obtained

i =0
v = 2
n=1
S* = (3.14) (0.972) = 3.06

v

The dimensional angular frequency is then calculated from

Eq. (A-24 and 40)

w® = E:}Q(S,L + w')fo

W = & fAde = NXG/B + Mo sin T4 g

For all cases of optimum design, £I = 0 since the liner oper-

ates in resonance, and furthermore



57 -

w¥* = (z)(/o’)[ P 0.2 _ (0.2)(0.6)sinese* ]
(/) 08t ) °+ C2)(2) J

The corrections due to the nozzle and combustion response are
thus seen to be negligible, so that only the pure acoustic

frequency need be considered. Thus

w® = (2)Xr0°)308) = 6.22 x 10% radians/sec.

I

¥
2

w2 = (6./2)(/0’)/6.28 = 975 Hs.

Ea/ f = (2)s0%)/975 = 2.05 s

Condition I: The liner geometry must be such that

Ar)v = 27 tan(27i/z)
The limits on L/)A are such that
2.04 xs0"% = 1/(2)(12)(2.%') = L/57 = 1/(r2Xz.05) = 407 x /0%

Iess liner surface area will be required for the larger value
(see the previous section and Condition 2 below ). Thus, we

choose L = 1 inch and

AV

i

2 Zan (2771/;1)//1
= 528 z‘-an(s.za'qz.a?-/o")/z.of

= o815 £t~

Condition 2: The liner geometry must be such that
f o = €0 Cre 7 7’)2
L - 6
£ &a,E}&C;C; M 5;;

In the problem at hand,

Gz = 1500 ft/sec.
. = 2000 ft/sec.

%e = 12
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¢ = 0.65
c, = [Z.o0
Y= 2

S0 = 3.06
We choose €y = 0.3 as a maximum chamber amplitude permissi-
ble.* Also

i/a
M = {.36:77/[2 )_’u(l + | cos®zris/e | )]}

The larger value for L/)\ is chosen since this value will give
a larger value for the above M and, in turn, a smaller value
for the product f 0. For this value of L/\ (= 0.0407 < 0.1),
the orifice flow should be assumed to operate in a quasi-
steady manner, so that handbook values for CD should be used.
Values for Cj depend upon the ratio L/D where D is the orifice
diameter. If we restrict L/D such that

2 = L/p = &£
then the minimum values for Ch (conservative values for liner
design) are near 0.75. Assuming that this restriction is

permissible, we obtain
M o= [(3)075)(324)/C2xr3)(2 + 0.903) ]

= 1.03
The value for G is obtained from Egs. (3.2-13 to 15). Sub-

Ve

stitution gives

6 = - (z2 +z1z)o0z/z2-12 + 02/22 + o

1.2 - 02-06(2 —cosz-wr-970-5-,0"%)(1 - & %)
2-2C1 - e%)(2 +0)

+

_ o02-0z2[Cef-2)C2+2) - 2-4C2+2)] 0
22 2-012-2(e&f - 1)

% ~ .22 4+ o2 + O 4+ O 2ALE = 20343 - &
= 0. 09

* 0
Such a value corresponds to a 9% pressure amplitude.
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we then obtain

f, o = 0.3-1500 [ _ (-2 21,00
21,2 2000 065 .0 203 L \3.06/) J

> 0.00724

Condition 3: Place the lined surface at or very near the

injector-wall corner of the chamber.

Optimum Designs: Up until now, the following requirements

have been placed on the liner geometry

L = 2 /nch
A/v = o081s ¢t
ffoo = 0.0072¢4

2 = L/D & S

b4

We note that the above restriction on L/D was made for con-
creteness, and that, for a different chosen range, the mini-
mum value of fLG would change slightly. There are an infinite
number of ways to satisfy these requirements. One particular

example 1s the following

L = 7 inch
O = 3/8 inch
A = 765 x ro- % Fe*
v = 9.4 x 0% ¢’
f, = 12/10
o = 7225 7%

Further specifications as to the shape of the backing volume,
the geometry, and spacing of the holes, as well as other par-

ticular choices for D, £ and ¢ should be dictated in specific

LI

applications.




CHAPTER 4

Special Considerations

The previous chapter was concerned with the problem of
optimum design in which there are no significant constraints
imposed on the design. In this chapter we deal with certain
other problems that are expected to occur in practice. The
first of these problems will be to evaluate the performance
of a given liner with a given position in the combustion cham-
ber. Another problem is that, in some applications, there
will be some uncertainty in the guantities that must be known
in order that the methods of the previous chapter be applied.
Also, there will be cases in which certain constraints are
imposed on the design (i.e., volume limitations, liner place-
ment restrictions, etc). Suggestions for handling those lat-
ter problems are also provided here. It is also expected
that a particular application may contain a mixture of vari-
ous problems. It is hoped that the designer can utilize the
knowledge in handling specific problems in these more compli-

cated situations.

4.1 Evaluating the Performance of a Given Liner Design

In order to determine whether or not a given liner de-
sign will provide chamber stability, the designer must know

the chamber geometry, the specific instability mode, the
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position of the liner in the chamber, the quantities listed
in Sec. (3.2) (the comments provided after this list should
be useful here), the parameter ¥ = A A/V, the parameter

w = 2m L/A, the fraction of lined surface area fL’ the per-
cent open area ratio of the liner o, the orifice mean flow
velocity parameter E, the local values for the chamber flow
components EI’ e, g, and the local value of the angle {.
These last five quantities‘can be calculated by use ofvthe
methods presented in Appendix A.

In order to calculate the parameters G} U e, g, one

II
must know the nondimensional chamber oscillatory amplitude

2¢®. If, however, there is no orifice mean flow, and the

a
position of the liner is near pressure antinodal positions
(maximum pressure amplitudes), these quantities need not be
calculated since their effects are negligible. If, on the
other hand, there is substantial orifice mean flow, and/or
the position of the liner is near a pressure node, one must
evaluate the design for particular values of ep.* For va-
lidity of the underlying theory, e should be a number small
compared to unity. For spontaneous instability, ep will be
ralatively small, whereas for triggered instability ep will
be relatively large. It is suggested that the calculations
of this section be done for a few values of ep, ranging from
a value near the noise level of smooth combustion to a value
equal to the largest permissible (before damage occurs) or

to a value @p = 0.3, whichever is smaller. The liner config-

uration tested will provide stability is it is stable for all

values of ¢ .
P

*We can choose a = 1 here.
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The liner performance evaluation is then accomplished
by

(1) Solve for the constants M and N by one of the
following methods.

(a) for no liner-mean-through flow, solve Egs.
(2.2-9 and 10)

(b) if there is a liner-mean-through flow, solve
Egs. (2.2-6 and 7) together with the auxiliary
eqguations given in Appendix B.

Method (b) can, of course, be used if the liner-mean-
through flow is zero, although Method (a) is then much sim-
pler. A computer program for the solution of the necessary
equations for (a) & (b) and instructions for its use are
given in Appendix D.

(2) Check to see that the instability frequency of the

combined chamber-liner configuration is close to the initial

instability frequency; i.e., make sure that

4

-PO'NX*RVGP&")‘ < aboul? 0.1 (4.1-1)
If this condition is not fulfilled, proceed to Step (3).
If it is fulfilled, proceed to Step (6). Note that, if the
liner geometry is the resonant geometry,. N =‘O, and this
condition will be satisfied.
(3) Calculate a new instability frequency from

(CAJ)NCW = (é)a

+ £ o N/ e, (3), (4.1-2)

rigina ripinal

and then re-do Step (1) with the new fregquency wnew‘ New

values for M and N will be obtained (Mnew’ Nnew). The previous
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values for M and N are called Mold and Nold‘

(4) Check to see if

”‘Nnew - Noldi /NOld < about 0.1

of if Condition (4.1-1) is fulfilled. If either are ful-

filled, retain the values of W M and Nnew' and pro-

ew’ ~Tnew

ceed to Step (6). If neither are fulfilled, proceed to
Step (5).
(5) Calculate a new instability frequency from Eg. (4.1-2),

where E .. .__.is the same value as it was in that step. Call
original E—

the present values of Mn and Nn ’ Mold and Nold respectively.

ew ew

Re-do Step (1) with the value mnew and obtain new values for
Mnew and Nnew' Go to Step (4).

(6) Check to see if Condition (I-2) of Section (3.2) is
satisfied, using the value for Mnew' and not that wvalue given
by Eq. (3.2-10). 1If this condition is satisfied, the liner
should provide chamber stability for that value of e_.

4,2 Uncertainties in the Chamber Speed of Sound and the
Instability Frequency

If the liner design is such that the orifice length L
is very small compared to the wavelength A\ (L/A < about 0.1)
uncertainties in the chamber speed of sound EIand the insta-
bility angular frequency w*, and consequently the wavelength

of oscillation () Zwé/w*) will not be very conseguential
provided the liner-mean-through-flow velocity is not excessively
large (4 less than about 0.3), and any one of Conditions A-1 to

A-4 of Section (2.2) is satisfied. Such results are due to the

resulting large band-widths, In other cases, such uncertainties
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may be consequential. It is then suggested that any calcu-
lations performed be done for a minimum, maximum and inter-—
mediate value of A, making sure, of course, that any criteria
to be satisfied be satisfied for all cases.

The above comments concerning uncertainties in A also

apply to uncertainties in any other quantity (L, A, etc.)

4.3 Optimization in Volume-Limited Situations

In many design problems, the volume occupied by the liner
must be held to a bare minimum. Important in relation to these
problems are the facts that 1) the quarter-wave geometry will

possess the smallest resonant volume possible (in compariéon to

the sum of the orifice volume and cavity volume for the Helmholtz

resonator), and 2) the quarter-wave (or some multiple quarter-
wave) geometry possesses maximum response. Such results follow
from the solution to the liner response given in Sec. (2.2).
In view of such results, it would be highly desirable to in-
corporate quarter-wave tubes in the design. Although }t is
true that the band-width of such devices is relatively small,
one might overcome this difficulty by incorporating tubes of
various lengths that vary about (only up to about 5%) of the
resonant length of 1/4 wavelength. With the knowledge of the
gquantities listed in Sec. (3.1) (the discussion of the entire
section should also be useful here), since the length L is now
determined, the design could be accomplished for these devices
by simply

1) Choosing fL and ¢ (or A) such that Condition (I-2) of
Sec. (3.2) is satisfied.

2) Satisfying Conditions (I-3) of Sec. (3.2).
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In some cases, merely minimizing the volume is not a
sufficient design solution, and 1/4 wave tubes connot be em-
ployed. Such cases may occur when the length of such tubes
is prohibitive, or if the resulting band-width is too narrow;
e.g. if errors in the knowledge of A overshadows any attempt
to increase the liner band-width by utilizing several tubes
of slightly different length. One may then want to utilize
Helmholtz resonators, but yet still keep the backing volume
V to a minimum. We assume here that the value of V is given,
and in most cases, this means that the fraction of lined sur-
face area fL will also be given. The problem considered here
then is to find the values of A and L and the corresponding
optimum value of 0. In all cases, this method will provide
for an off-resonant design, so that the difference between
the instability frequency of the chamber-liner configuration
and the instability frequency of the chamber alone might be
significant. If the chamber flow effects are significant
(the liner is placed in regions of pressure nodes), we caution
that proceeding to a design even slightly off resonance may be
dangerous. The reason for this danger is that uncertainties in
A, A, L, etc., may result in actual designs that operate in
regions where the real part of the liner admittance is negative
(see Sect. 2.2).

The method of approach is described as follows. For
chamber stability, the objective is to make the product o fL M

large enough (see Condition II-2, Sec. (3.2) ). As already
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mentioned, if the backing~volume V is given, then fL will
usually be given so that these quantities can be considered
fixed. For a given instability frequency and a given volume
V, as one varies A, the quantity M passes through a maximum.
This maximum occurs at a point which is essentially the reso-
nant point for that frequency (Sec. 2.2). On the other hand,
for fixed volume V (and fL), the quantity ¢ will increase
linearly as A increases. Thus, the product ¢ M will always
become a maximum at a value of A that is larger than the
resonant value and thus at a frequency that is larger than
the liﬁer resonant frequency. The difference between the
liner resonant frequency and the relative-optimum frequency
will increase as the peak of M vs. A becomes broader (i.e.,
as € increases). Calculations will be necessary in order
to find out where the product ¢ M maximizes.

In order to carry out the method, the designer must
know the quantities discuséed in Section (3.1) {(the dis-
cussion of the entire section should also be useful here),
and the backing volume V (from which fL can usually be
found). As in the previous sections, the calculations mgst
be done for particular values of e, say €y- Also, if velocity
effects are important (the liner placement is near a pressure
node), and if the liner-mean-flow is sufficiently large (lul >
about 0.3), the proper flow parameters must also be specified.
The previous sections of this chapter and Chapter 3 contain in-
formation that will guide one in calculating the flow parameters

U. e, g, and U

I the liner-mean-flow parameter u, as well as

IT’

in choosing the amplitude €5°
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The procedure for this section then becomes
1. Choose a convenient value of w = 27 L/\, and solve
for M and N for various values of A in the parameter ¥ =
AA/V (both A and V are fixed). This solution can be accom-
plished by one of the following methods:
(a) for no liner-mean-through flow, solve Egs.
(2.2-9 and 10),
(b) if there is a liner-mean-through flow, solve
Egs. (2.2-6 and 7) together with the auxiliary equations given
in Appendix B.
Method (b) can be used if the liner-mean-through flow
is zero, although Method (a) is then simpler. A computer
program for the solution of the equations necessary for
@) and (b) and instructions for its use are given in Appendix D.
2. Calculate the corresponding values of 0 as a function

of A from

o = '4//41 (4.3-1)

where AL is the total lined surface area (perforated area
plus non-perforated area).

3. Plot the product oM vs A and choose the value of A
where the product is maximum. Call this value'AOp and the
corresponding values T op? Mop’ Nop'

4. Evaluate the above liner geometry by the procedure
presented in Sec. (4.1). Step (1) of that procedure has al-
ready been performed here. 1If the liner does not provide

stability, choose another permissible value for w = 2m L/\

and repeat this entire procedure. If a value of w cannot



-68~

be chosen such that the liner provides stability, the de-

signer must allow for more backing-volume, and consequently,

larger values of fL if an effective acoustic liner is to be

employed.




APPENDIX A

Acoustic Modes

This appendix contains the solutions for the acoustic
modes in rectangular, circular-cylindrical, and annular-cy-
lindrical chambers. These results were taken from Reference
(8). The effect of an acoustic liner on the frequency of

any acoustic mode is given at the end of this appendix.

Rectangular Combustors

The coordinate system for this geometry is illustrated
in Fig. (A-1). In what follows, all lengths are nondimension-

alized with respect to the chamber width w, velocity with

Z

o= w sl h

4h° / /

/

;ha /d : Injeclor
h fe !
P PRl il A
P
7~
////
- Nozele ELntrarnce

Figure (A-1)
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respect to the average chamber-mean-speed of sound EI&, and
thermodynamic properties with respect to their chamber-mean-
static values. Nondimensional time equals physical time

multiplied by I /w.
a

The nondimensional pressure is given by

A = 2 # PcosgmrZ cosm'y cosn*z coswr = (A-1)
€
where
#_ = chamber length/chamber width (A-2)

The nondimensional velocities in the x, y, and z directions

are given respectively below

w = &+ pEL sijr X cosm®ycosntz sinwt (B3
Xa¢e “&
* ‘ . _
v = P _cosgm X sinm*y cosntz sinwl  (B-4)
¥ >
w = P - 6054'77‘_x_co5m*7 sinntz sirwt (A-5)
@ e

The nondimensional chamber angular fregquency w is given by

= _
& o= fﬂ“ + £°7° (A-6)
“e
where
A = ot o op¢? (A-7)

From the nondimensional scheme, the dimensional angular fre-

quency w* is related to w in the following way

& e T

o> o= c, o/ w (A-8)
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In the above, j is an integer:

P

3 = o i, 2 ie s £
- J y 4

When j = 0, it can be seen from Egs. (A-3 to 5) that the
mode is purely transverse, and when j is nonzero, the mode

is either purely longitudinal or mixed longitudinal-trans-
verse. If one knows the particular instability mode, j will
also be known. The number m* is zero or any integer multiple
of .

m* = i £ = o 2,2, .. (A-10)

The number n* is such that

nty = Amr , &= o01,2 .. (a-11)
where
[ = chamber height/chamber width (A-12)
Longitudinal modes occur when m* = n* = 0. The constant

P is an amplitude that cannot be determined from a linear
analysis. This quantity must be estimated when specific nu-
merical results are needed. Suggestions for this estimate
are given, where needed, in the main sections of this manual.
The notation of Sec. (2.1) can now be expressed in the

following way (dropping the subscript 4 of Sec. 2.1).

e = p (A-13a)
a = (cosjmrZ cosm®y cosn*z )V* (A-13Db)
7, = a, /¢ (A-14)

e = 9 (A-"lS)




=] D

: ‘ 2
g = 2 f('*”f S/ 272 cos m y cos ra"“z?)
Yy e L~ %e e
2
+ (m’cos;’ 77‘_% Srn m*y cos n".-?) (A-16)
. . 2 Y2
+ (n* X . ’
(fl Cos 477 ,xeco.smy.suﬁn }) 5
w = £ B/ w (A-17)
= Arclan 2o 002)2/Ce-a,) "
4 [Cw ) / z ] t A (A-18)
where o —
A/ _ > “-“Z = o (A_lg)

LI , «-dy <O
From Eq. (A-15) we notice that only standing modes are
permitted in such chambers and the chamber pressure is always
90° out of phase with the chamber velocity. From Eg. (A-18),
we notice that, for transverse modes (j = 0). ¢ = 1n/2, for
longitudinal modes (j # 0). & = 0, and for mixed transverse-

longitudinal modes (j # 0) the angle { will, in general,

oscillate with time.

Circular-~Cylindrical and Annular-Cylindrical Combustors

The coordinate system for the annular-cylindrical geometry
is illustrated in Fig. (A-2). For this geometry, all physical

/X

WNoez/e enlrance

Tojeclor

Figure A-2
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lengths are nondimensionalized with respect to the outside
chamber radius, L velocity with respect to the chamber-

mean speed of sound c and thermodynamic properties with

II
respect to their chamber-mean-static values. Nondimensional
time equals the physical time multiplied by Ei/ro. The case
of a circular-cylindrical combustor arises in the special

case when the inner wall radius r, equals zero.

The nondimensional pressure is now

= 7 + cos 472 e cos(we + 226)
A 27—, Yost )[P C (2-20)
+ Gcos(we -20) ] ,
where.aé is the ratio of chamberblength to chamber outer
radius. The nondimensional velodcities in the x, r, and O
directions are then respectively
« = & + L EZsiniv X B[ Psin(r
o Yo e o Xe %’ [ (r-21)
+ D8) + Qsin(wt -06) ]
*55* -4 Posmn (
v = o % cos 472 C+) S (we (A-22)
¥ o 27 e (53 *) 25!
+ D8) + Qs -08)]
w = 2 os 7% 4 (a(r)[/’cos(wt + 28) (r-23)
= - " _ cos .S
¥ O d Fe F D@
- Qcos(we -v6)]
The nondimensional-chamber-angular frequency, @, is given
by
- LY
AS - P4
G o= ) a4 4z (A-24)
4:
e
where
£ 2
27 = S (-25)
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From the nondimensional scheme, the dimensional angular fre-

s

quency, w*, is related to ® in the following way

l

Wt = a5/ (A-26)
where ro~is the radius of the outer chamber wall.

In these expressions, j and v are either zero or an

integer:
j=0,1,2, . .. (a-27)
Vo= O’ l' 2' ° e ° » (A—28)
Thus, when j = 0, the mode is transverse, when j # 0, the

mode is either longitudinal or mixed transverse-longitudinal.

When both j and v are zero, the mode is purely radial. 1IEf

the particular instability mode is known, both j and v will

be determined. See Tables (A-1 and 2) for further explanation.
The function wvn(r) is a linear éombustion of Bessel

functions; namely,

B,(r) = T (Zr) + 8y, ( A*r) (A-29a)

where \#% = S:n and B* are determined from

J 9 vor) - LT L oyw| =0
dr J;(r)lr: 5;; dr %( }r= S;;f Ie I' O R e I/: 'S:DJ
and e
) -31
6" = - Lanw)f /;—3’; v (1) ) (B-31)
i“m%}%f r= ‘Sﬁ%g
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where

€ = chamber inner radius/chamber outer radius (A-32)

For full chambers (§ = 0), Egs. (A-29a and 30a) specialize

to
%s (r) = TpC %) (A-29D)
5—; J;(r)l_ . = 0 - (A-30Db)
/' 51)3 )

so that B* is then zero.
Roots of Eg. (A-30b) are given in Table (Afl), and
were obtained from Ref. (12). Roots of Eq. (A-30a) are given
in Table (A-2), and additional values can be found in Ref. (13).
The amplitudes P and Q are constants that must be esti-
mated. Only in certain special cases will this estimation
be necessary for design work. In particular, for spinning
modes, Q = 0. For standing modes in which there exists nodal
points, P = Q. In other cases of standing modes, two measure-
ments can serve to determine P and Q: at the point where the

pressure oscillations are maximum ( (p')ma ), P+0 = (p') /

X max

cos j 1 ﬁﬁ wvﬂ(r), and where the pressure oscillations are
e

D ’ _ ’ : X

minimum ( (p )min)' P 0= (p )min/ cos j m X wvﬂ(r). Further
suggestions are provided, where necessary, in the main section
of this manual.

The notation of Sec. (2.1) can now be expressed as

e = [JA7 e 1" a-332)

o . bre Ve
a = { cosjm X ]z/z);(,,)j | (A-33b)
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Table A-1

ACOUSTIC MODES IN CIRCULAR-CYLTINDRICAL CHAMBERS

1.

Roots of JS (ra). = 0

a is the nth root of Jé (ma) =0

VT

83ﬂ is obtained by multiplying the corresponding values

of avn by ©

=L g = = = = =
qvn =0 S\)ﬂ n 1 n 2 i1 3 n 4 n 5
v =0 0.000 1.220 2.233 3.238 4.241
v =1 0.586 1.697 2.714 3.726 4.731
v = 2 0.972 2.135 3.173 4,192 5.204
v = 3 1.337 2.551 3.612 4.643 5.662
v = 4 1.693 2.955 4.037 5.082 6.110
2. Meaning of v, m, amd j

Both v and n give the transverse character of the mode. The

value
means
of (n
means
value
j =0

Examp

The a

of v gives the
the transverse
- 1) gives the
the transverse
of j gives the

means the mode

les: j =0, v
j=01\)
i =0, v
j=1, v

C )
2 22
coustic frequency is given by f = ’)S* 2 4 1

tangential number of the mode, and v = 0
character can only be radial. The value
radial number of the mode, and n = 1

character can only be tangential. The
longitudinal character of the mode, and
can only be transverse.

st

0, m = 2 means ls radial

1, n = 1 means 1 tangengéal

2, n = 3 means combined 2 tangential,
nd ;
2 radial

0, n = 2 means mixed first longitudinal,

first radial

Ta

Zﬂro v X

e
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g = & /e (A-34)
_ JPEr O .
e - I 3
p == COS LT 5 =5 }l;]?(/‘) (A-35)
2 2 . ’
g = {’"P t Q 4 [ 7 sin 5 X £ Y%
€ ¥ &3 ( Ye " % ( )) (A-36)
X 2 /
+ (55, cos g7 %'CH) ] 3/,1
w = 2 &3/,; (r-37)
and

]

Vs Arctan [ Cort ¢ w222/ a»&)] + A»r (38

where

Vd P4
A = (A-39)
, U4 -~& <O

Thus, for mixed longitudinal-transverse modes (j # 0), the

angle |y will, in general, oscillate with time. For purely

transverse modes (j = 0), Vv = 1m/2, and for purely longitudi-
= * = =
nal modes, (v SVﬂ 0), ¢ 0.

Frequency Corrections

In an actual combustor, the instability frequencies
differ slightly from the acoustic-mode frequencies given
above. Certain effects not present in the acoustic-mode solu-
tion account for this difference. The effects of a nozzle,
liner, and combustion response have been considered in Ref. (8),
and we present these results here. The liner considered is a
full-length liner with uniform admittance and with no liner-
mean-through flow. The results can be expressed by a correc-

tion w’ to the above values of v as follows



~79~

co = 5 + (A-40)

where »’ is the corrected frequency. The results are
-, J— | P
cw = f;///%-og — A&

A2 P Sy R

(A-41)

See the Table of Nomenclature for the definitions of these
quantities. 81 is the imaginary part of the nozzle admittance.
If 81 is not known, one might exclude the first term of the
above equation and consider the dimensional chamber length

xé as the actual chamber length plus 2/3 of the nozzle con-
traction section. One could consider partial-length liners

in an approximate way by considering the imaginary part of

the liner admittance SI appearing above as

L = 5L, (A-42)
where p denotes the value for the partial-length liner and
fL is defined in Chapter 3.
If the mean flow Mach number at the nozile entrance ﬁé
is large, one could approximately account for its effect on
the longitudinal "component" of the frequency by correcting
the (jﬂ/xe)2 term in Egs. (A-6 and 24) in the following way

[(/”/”‘c)z]%u - [(;7’/40)27“(1—/‘7;)2 (A-43)

£/e e




APPENDIX B

Definition of Constants and Auxiliary Equations

The constants in Eqs. (2.2-6,7) are: |
Ao = lx,(@°- @?) + g4z + §,(@*+ 27
- ;ﬂ,"—A?,)]/z;r + [ (e, - 3. (
sn = sing®) + (x4~ 8,)(cos g7
- cosg®) + (e, —/,)C:/»zﬁ‘—:/ﬂég‘)/
2 +(u«,-a)Xcoszg? -coszg<)/e]/7 (B-1)

A, = 2/ r + [(q,—f«,)d/nyzc + (5 - )sin g”
+ Cp-8)sm(@rar,) + C,-3,)(cos 7
% COssﬁ’/J ~cos g - cos 3¢/3 )/ 2
# Cot, = B30~/ f 7 - J//}.?%”/: *+ S A
s /s)/2 4+ (&, -p8,) (cos2gd” -
coszd)/ 7 + (&, ) snzgdc ~simnzd?
V4 F x g2 = A (27 -#e)/2 ]/ (B-2)
Azo = [7{”(56 “Be) + A (p.-5.) + a7, (e, -

Bl F 277‘&]/277 # [é}a (Csind” -
sin 4 ) # Jﬁ({jg;;%(”g@&ggﬁ) 7 5, (

“B0=~




AZ/

/

i
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Srn 247 - sem2 € )/’z

COJZ%A )/2]//7'

+ 53,( cos & gﬁc -

(B-3)

[, Csin Cg?+ 82,)- s d?) + A C
s’ — s (hPraz,)) + 8 (s g7
- s dd) # 5, (cos g # cosag /s
—cos4? - cosa /5 /2 + 5 (
see2 Z7 5//;3%"/3 - s A~ Sn 3
%C/J )/Z + & Ccos 2, —cos247)
S 4+ o Csrmedd? -sinz2d)/4

5, Cem=p32))21/ 7 e

[ Co -5 )(cosgd?-coset ) + (s -p )<
cos (g€ raz)) + (x,- ) ~singd? +
s/0 3A) 3 # sndC - sz s) /2 +
Co,-B33)(~cos J? # cos 3l /s ¢ cos €
corsg s Ve ¢ Coy I e
~smzd)/2 + (g -p ) coszgs -

coszd¢) /4 + X, Z°/ 2 + f (27 -
ARV N Y.

(B-5)
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~cos A?) + 85, (smind? - s 347/53
- sin @St sm3g )3 )/ + 5 (cosA”
~cos3%)/3 — cos A # ca:sg%ﬂ/bg/z
# 5, (cos2p" ~cosa@?)/7 + & (

Si7 2¢ ~ semz2g? )< # S, (27 - AB)/2

1/ 7

where

x, = -RY#c - cyzef + (2%« e‘efqz)/‘ﬂ
<, =  mvjzci + egq/z

x, = - (me-w2)/28° 2 (Ce” - g“‘)//ff
xX, = T qgcospp  + @ N/CSf

X, = g ecosy - amMm/cs

<, =  Cpgf/e #(3,-2)/(x -2

B, = Cr, (2% + &% +92)/ ¢

S = Cpregq/z

g, = Gy (ef-g2) /7

Sy T Cpr O g cos

S T Cry Uy € cos

(B-6)

(B-7)
(B-8)
(B-9)
(B-10)
(B-11)
(B-12)
(B-13)
(B-14)

(B-15)

(B-16)

(B-17)
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S, = —ag%/zcf - Récostw/2¢S + 7f e
+ (3. - 5’<)/( X -2z) (B-18)
S, =  MN costw/2¢; (B-19)
S, = = (7% -y?%) costewo /S 2cCf (B-20)
S = i Ncosew /) (B-21)
5, = = & Mcoscw/ (B-22)

If u = 0 or if Eqs. (B-3la and 32b) can be satisfied:
5 = —&/% t Cop (2G5 retrqg?)/# (232
A= T /2 o+ (%3 -X )/a:_ Cx-2) (B-24b)
If u < 0 and Eq. (B-32a) cannot be satisfied:
§ = -~/ v G(2F% r et qgt)/# (B-23b)
S = Xy = Ty G 2t (3,-&)/(n-r) (B-24b)
If u > 0 and Eg. (B-3la) cannot be satisfied:
5 = LB = Z‘-,_%.(Z&j'rz/-e‘f qz)/él (B-23c)
- = 2 3 _ =
Be = Cop TS/ 2 £ (%3, -x)/5(5-2) (B-24c)
In addition
@7 = = Arecos(-a/R) = Aretan (w/rm) - A7 (8-25)
?,/6 = 2 ﬂ/‘CCoJ (—- EZ//?) (B-26)
If cos w > O:

&' = ~ Arccos(-a/Reosw) - ArcZan (N/7) - A& z(B-27a)
%/B = & Arecos ( - (_:Z/ﬁc:@s co ) {(B-28a)
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If cos w < O:

2" = Arccos (- a/Reosw) - Arectan (W /i) -4 7 (B-27D)
Qg” == 2 Arccos (ZZ//? cos o) (B-28b)
also,

A= g%+ ¢, 2= g + 2° (B-29)
A = O S M =0, or =1 F M<O (B-30)

The following equations can serve as implicit definitions
for AT, and ATZ. Such equations are necessary only when u #£ 0.
If u = 0, the correct result can be obtained by setting ATl =
AT, = 0 in the above expressions. 1In all of the following
three sets of equations, one must consider w << 1, If a solu-

tion exists for the first set of two equations, then that is

the proper solution.

w - e[~42,£‘{ + A (<1 ~COJ‘AZ‘,)] 0 (B-31a)
= 6[471552 + R(.Z-cosAZ;)]ZO (B~32a)

For u < 0, if w is so large (but still w<<1) that a solution

to Eg. (B-32a) does not exist, then the proper set is

2 & Arccos ("‘ZZ//?) 7~ (24}‘2; + VRE-ZF C
cos At #1) = @ simAT = O (B-31b)

7

4‘;2‘; = O (B-32b)
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For u>0, if w is so large (but still w<<l) that a solution

to Eg. (B-3la) does not exist, then the proper set is

Az, = o (B-31c)
2&7,4#:605(-67//\’) - ZAZ, F+ IR -zZ* C
cos Az, + zZ) # AL StrAl, — 27 = O (B-32¢c)

‘The constants for Egs. (2.2-9,10) are

£ = [z;‘fCe‘+g‘)/2]C1'£—’,oz>

+ Zf lcos wl (1= Epp) i
E = (e?-q*)(1-7¢,)/3 (B-34)
£ = Zeq(j—(‘_”)/-? (B-35)
g o= Z qeosy (CTopt 2)/2 (B-36)

|

&;’ e cos p(Cop * J)/Z (B-37)

!



APPENDIX C

Ioocal Liner Effects

In this appendix, we obtain, by a method similar to
that used by Cantrell and Hart( ll), an expression for the
acoustic growth coefficient for a volume V enclosed by a
surface S. The difference between the approach here and
the one in the reference is that the ordering assumed in
the flow quantities is consistent with that presented in
Chapter 2. It will thus be necessary to proceed to third
order for the surface flow quantities.

The basic assumptions here are that volume-loss (or
gain) mechanisms are omitted, and that the flow field is
irrotational and isentropic. The basic equations can be
found in the reference, and the energy equation can be

written as follows (analogous to Eq. (14) of the reference).

i

< f';j;dv{[/;(c,T # wr2/e)] 3>

- <5;013'{75(/’+"’2/€)1 + o, (hr ~v¥e),
i, (h+i/2), + A 4+ ¥e),
JChraise), + B (Hht 2e),

+ A, (horoat2), 5

(c-1)

\}.
3
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where the symbols of the flow guantities are dimensional

and have their conventional meanings, subscripts denote the
order of the perturbation (e.g. ¥ = ﬁb + ?1, etc.) and < >
denotes a time average much larger than a period of oscillation
but yet much smaller than any transient time. Utilizing the
continuity and momentum equations, the above can be rearranged

to (analogous to Eg. (15) of the reference).

< %?jvdV{[/(CvT + /«r‘/z)]z - o, (he ~r¥2),
- A& -2 = —<@d${@U+M%L
v A (hene)s v A (hrate), ]y P

Performing the indicated expansions, utilizing the equation

of state and the isentropic relation, considering that Pys Pqs

2
v v
of "1

Pps Vor Vp are all of the same order in the volume, with P, <<

are all of the same order at the surface but that Py

Pys Py << 0ys Yy << vq everywhere, the above becomes (analo-

gous to Eg. (16) of the reference).

<f,i55;a’V{ /:,‘/zﬂcf + /),/u;‘/z}) =
- K Sdi{pm + o (@-2) (c-3)
+ AL Y2S Y

ot

Assuming that any first-perturbation flow quantity g, ~ e’ 7,

the above becomes (analogous to Eg. (17) of the reference).

. <Jds{pn, +/gﬂc,,(/=}‘;v?‘f)wafv:ﬁw%}>
<SavipVepct + 4mi/2])

(C~4)



where subscript n denotes normal component.

In the notation of Chapter 2, we have at the surface

2 _
g = (ae)” g coswt
2= A
A, = oel,d
Ay = €L, 55
i, = oce&G(Mcoswt - Nsinwt)
g, = eZ, (ecoswt + gs/ncwt)

where the coefficient a is a function of position and is of

order unity or less. In the volume, we can say that

o(e?)

]

'

o= oO( €%)

/

~-88~

(C-5)

(C-6)

(c-7)

(c-8)

(c-9)

(C-10)

(Cc-11)

(C-12)

Substitution of Expressions (C-5 to 12) in Eg. (C-4), and per-

forming the time averages gives
2 xt = = La’siwaze’@é;/ﬂ/z +
o*(éE,)s/;ZC.Ne —/qué' + o9 (eg)’

sa (M rw)z /6

where G is a positive constant of 0(¢*). Thus we can write

&

o’ = -Kj;g’:;[(O‘/e)[agM/b; +
Z(Me -Ng) + 0’2&?Cﬁ2%/‘v’g)23

where K is a positive constant of order unity.

(c-13)

(C=14)
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APPENDIX D

Computer Program

This appendix contains a computer program written in
Fortran 4, that calculateé the liner response by means of
the theoretical results presented in Sect. 2.2. The con-
struction of the program is such that it is convenient only
for Helmholtz resonators of finite cavity volume V and for
half—wave or multiple half-wave tubes. For quarter or multi-
quarter wave tubes (V = 0), a different programming technique
would be regquired.

The main program is set up in such a way that caculations
will proceed with ¥ = AA/V as thé running variable; i.e., the
results will contain information for a plot similar to those
presented in Sect. 2.2. Subroutine RNEWT1l solves Edquations
(2.2-6 and 7) together with any necessary auxiliary equations
presented in Appendix B by means of a Newton-Raphson inter-
action method. This subroutine is used when the orifice-
mean-flow velocity (u) is non-zero, and is restricted to
values of w = 2 L/\ less than 0.3. The theory is not valid
for larger values. Subroutine RNEWT2 solves Equations, (2.2-9)
and 10) by a Newton-Raphson method and is used when the ori-
fice-mean-flow velocity is zero. There is no restriction
on the value of w in this program. Subroutine CRAMER merely
evaluates a determinant and is necessary for the calculations

in subroutine RNEWTL.
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Inputs

The

MGUESS -

NGUESS -~

ALPBGU -

DTAUIG -

DTAU2G

ALOVES

DALAMO

UcZB

[

EU

required input data is the following:

the value of M that will serve as the initial guess
for the iteration method at the starting value

of the running parameter ¥ = A)\/V. For succeeding
values of ¥, the value of MGUESS is chosen as the
value of M that is the solution for the previous
value of X. If no solution is obtained, then

MGUESS is not changed. The value of MGUESS should
be fairly close to the solution for M in order that
convergence be obtained. For instance, if the solu-
tion for M is 2.0, experience indicates that reason-
able values for MGUESS would range from about 1.0

to 3.0. :

has the same relation to the solution for N as does
MGUESS have to the solution for M.

has the same relation to the solution for a as does
MGUESS have to the solution for M. This parameter

is important only when the orifice-mean-flow velocity
(@) is non-zero (it appears in the auxiliary equa-
tion in Appendix B). If W=0, one could choose ALPBGU =
1.0. 1In all cases thus far, a value of 1.0 was found
to be sufficiently close to the solution (when U # 0)
for convergence to be obtained.

has the same relation to the solution for A 7; as
does ALPBGU have to the solution for a. This param-
eter also appears in the auxiliary equations pre-
sented in Appendix B and is important only when

W # 0. IfuwW =0, choose DTAUIG = 0.0. 1In other
cases, the proper value will depend on the problem,
although it is always true that 0 < DTAUIG < T,
Choosing DTAUIG near unity appears to be good for
many cases.

has the same relation to the solution for ATy as
does DTAUIG have to the solution for ATl.

the starting value of the running parameter ¥ =
AN/V.

the increment of ¥ = A\/V at which the calculations
proceed.

the value of GI for which the calculation is desired.

the value of e for which the calculation is desired.



GU

SY

CPCB

UCAZB

CPCAB

UZB

CD

PAMP

ETAB

GAM

NUMPTS

ICASE

-9] =~

the value of g for which the calculation is desired.
the value of § for which the calculation is desired.
the value of EbI for which the calculation is desired.
the value of EI for which the calculation is desired.

the value of EéII for which the calculation is desired.

the value of u for which the calculation is desired.

the value of CD for which the calculation is desired
the value of the local non dimensional chamber pres-
sure amplitude ez for which the calculation is desired.

the value of w = 27 L/A for which the calculation is
desired.

the value of ﬁ- for which the calculation is desired.
This parameter is important only when @ # 0. See
Nomenclature for its definition.

the value of y for which the calculation is desired.

the number of values of ¥ = AA/V for which calcu-
lations are desired.

a parameter important only when u # 0, and instructs
the program on what set of equations to solve. If
ICASE = 1, the contact surface in the orifice flow
is assumed to pass completely through the orifice.
If ICASE = 2, the contact surface is assumed not

to pass completely through the orifice. When the
solution for ICASE = 1 exists, it is the proper solu-
tion. See the example calculations of Sect. 2.2 for
further understanding of this aspect of the problem.
for most problems, near the resonant point of oper-
ation, the proper value of ICASE is 1.

In order to feed in the above input values, one must

write the proper values on data cards in the order given

above.

The parameters MGUESS to GAM must be written in

floating point notation (a decimal point must be present) and
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the field alloted to each parameter is 10 characters. Since
a data card contains space for 80 characters, the first 8
parameters MGUESS to UCZB must be written in the first data
card, the next 8 parameters EU to CD must be written on the
next data card, and the last 4 parameters must be written on
the third data card. Only the first 40 spaces will be utilized
on the third data card. The last two parameters NUMPTS and
ICASE are integer values (no decimal point) and must be written
on the fourth data card. The number of spaces alloted to these
parameters is 10 each and both numbers must be right justified:;
i.e., the integer value of NUMPTS must end at the lOth space,
and the integer value of ICASE must end at the 20th space of

the fourth data card.

Output

The program output first consists of a presentation of
pertinent information characterizing the run. Most of the
above input values will be printed out. The calculated re-
sults then appear for each value of the parameter ¥, written
as ALAMOV. Results of each iteration are printed along
with the final answer.

When u = 0, the final answer contains tbe only two
variables M and N, since two simultaneous equations are solved
(appearing in the output as F1 = 0 and F2 = 0). When u # 0,
the variables M, N. a.(ALPB), AT, (DTAUL), and ATZ (DTAU2Z)
appear in the calculated results. In general, five simul-
taneous equations are solved (F1 =0, F2 =0, F3 =0, F4 = O,

and F5 = 0). When the word ANSWER appears before the final
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result, that result is considered as a proper solution.

Possible Print-out for Troubled Programs

When difficulty occurs, one or more of the following

print-outs will occur.

FOR NONZERO ORIFICE-MEAN-THROUGH-FLOW, W MUST BE SUFFICIENTLY

SMALL FOR VALIDITY. VALUE OF W GIVEN IS TOO LARGE.

The underlying theory is restricted to values of w small
compared to unity. The program will not run if w (written

as W) is greater than 0.3.

JACOBIAN TOO SMALL, ITERATION WAS STOPPED, BUT IAST RESULTS

ARE PRINTED BELOW.

The mathematical technique employed cannot converge if the
jacobian is zero. This will happen when there is no solution .
to the stated problem or when the values of MGUESS, NGUESS,
etc. are too far from the solution. When values for M become
too largely negative, it has been observed that no solution

to the programmed eguations exists. This is believed to

occur because of certain approximations made in the theory.
These regions appear to be too far from resonance to be of

practical concern in the optimization problem.

TOO MUCH ITERATION, ITERATION WAS STOPPED, BUT LAST RESULTS

ARE PRINTED BELOW
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This print-out will occur when there is no solution to the
stated problem (M becomes too largely negative), the wrong
value for ICASE was chosen (solution of an improper set of
equations 1is attempted), or the values of MGUESS, NGUESS, etc.
are too far from the solution.

There are also certain comments concerning the parameter
UwIiGc ( = El = 52 = u/R). The reason for these comments is
that, in the solution, the arc cos of UWIG must be taken.
If the magnitude of the orifice mean velocity u is too large,
UWIG will be greater than unity. Even though the solution
for R may be larger than u, for intermediate values Within
the iteration, UWIG will be re-defined if a wild point pre-
dicts too small a value for R. 1In the final step of the
iteration, no interference is made with UWIG, and if R is
then too small, this is interpreted as that a»solution for
R does not exist that is larger than u. The theory is not

valid in this case. Only smaller values of u could be

allowed.

Program Listing

At the end of this appendix is presented a listing of

the program.
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19
20
21
22
23
24

25
26
27
28
29
30
31

32
33
34

35

36
37
38
39
40
41
42

by
us

46
7
ug
49
50
51
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5308 TONOH

C

REAL H, N, M2, N2, HGUESS, NGUESS

COMMON MGUESS, NEUESS, ALPBGU, DTAU1G, DTAU2G

COMMON CD, UZB, UC7B, UCAZB, EU, GU, SY, W, PY, APAR, ETAB, GAH
COMHON EPSB, SIG, CPCB, CPCAB

COMMON ICASE

READ(5,101) HGUESS,NGUESS,ALPBGU,DTAU1G,DTAU2G, ALOVES, DALAHO,UCZB

READ(5,101) EU,GU,SY,CPCB,UCAZB,CPCAB,UZB,CD
READ (5,101) PAMP,W,ETAB,GAM

101 PORMAT (8F10.4)
READ (5, 102) NUMPTS,ICASE

102 FORMAT (21 10)
PY = 3.1415926536
EPSB = PAMP*%0.5

PRINT-OUT OF GENERAL INFORMATION

8 CONTINUE

YRITE (6, 9)

9 FORMAT (/ 111H koo fotok dokofokokotok ook ok fokdor ok ok dolk o ok ofok Rk ok

T s o o ook o o o ke ok ek **#**********#******************************/)
WRITFE(6,10) UCZB, EU, GU, SY, CPCB

10 FORMAT {(8H UCZB = ,F10.4,5X, SHEU = ,P10.4, 5X,5HGU0 = ,F10.4, 5%,
1 SHSY = ,F10.4, 5X, 7HCPCB = ,F10.4)
WRITE (6,11) UCAZB, CPCAB

11 PORMAT (9H UCAZB = ,F10.4, 5%, S8HCPCAB = ,F10.4)
WRITE(6,12) CD :

12 FORMAT(6H CD = ,F10.4,40H, WHAT IS THE ORIFICE FLOW REALLY DOING?)

WRITE( 6,13) PAMP, EPSB, GAM,W, ETAB
13 FORMAT (8H PAMP = ,F10.4, 5X, THEPSB = ,F10.4,5X,6HGAM = ,F10.4,
1 5%, 4UHW = ,F10.4,5X,7HETAB = ,F10.14)
IF(UZB) 115,113,115
113 WRITE(6, 114) UZB
114 FORMAT (7H UZB = ,F10.4)
GO TO 120
115 GO TO (116,118), ICASE
116 WRITE (6, 117) UZB, ICASE

117 FORMAT(7H UZB = ,F10.4,2X,8HICASE = ,I1,6U4H, CONTACT SURFACE IS A

1SSUMED TO PASS COWMPLETELY THROUGH ORIFICE)
GO TO 120
118 WRITE(6,119) UZB,ICASE

119 FORMAT(7H UZB = ,F10.4,2X,8HICASE = ,I1,68H, CONTACT SURFACE IS A

1SSUMED NOT TO PASS COMPLETELY THROUGH ORTFICE)
120 CONTINUE
DOING THE DOG-WORK
21 CONTINUE
ALAMOV = ALOVES
NUM = 1
821 CONTINUE
WRITE(6,921) ALAMOV
921 FORMAT (/10H ALAMOV = ,F10.4)
IF (UZB) 822,826,822
822 IF(W-0.3 ) 825,825,823
823 WRITE (6,824)

824 FORMAT {105H FOR NOHKZERO ORIFICE-MEAN-THROUGH-FLOW, W CAN'T BE TOO

1LARGE FOR VALIDITY. VALUE OF ¥ GIVEN IS TOO LARGE.}
G0 TO 32
825 CALYL RNEHWTT{M,N,RLPB,DTAU1,DTAUZ,ALAHOV,JACOSH, ITERLG,NEAT)
GO TO 827
B26 CALL RNEWTZ (M ,N,ALAHOV,JACOSH,ITERLG,NEAT)
827 CORTINUE
TF{(JACOSH} 24,24,22




52
53

54
55
56
57

58
59
60
61
62
63
64
65
66
67
68
69
70
71

72

98
39
100
101
102
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22 WRITE(6,23)

23 FORMAT (87H JACOBIAN TOO SHALL, ITERATION WAS STOFPED, BUT LAST RES
J0LTS ARE PRINTED DIRECTLY BELOW)

24 CONTINUE
IF (ITERLG) 27,27,25

25 WRITE(6, 26)

26 FORMAT (87H TOO HMOCH ITERATION, ITERATTON WAS STOPPED, BUT LAST RES
TULTS ARE PRINTED DIRECTLY BELOW)

27 CONTINUE
IF (NEAT) 728,928,728

728 MGUESS = H

NGUESS = N
IF(UZB) 528,529,528
€28 CONTINUR
ALPBGU
DTAU1G
DTAU26G
529 CONTINUE
GO TO 929
928 CONTINUE
WRTTE (6,729)
729 FORMAT (/80H SOMETHING'S WRONG. SEE ABOVE COMMENT (S). QUANTITIES BE
1LOW- SHOULD NOT BE TRUSTED/)

ALPR
DTAUA
DTAUR

[T

929 CONTINUE

PRINT-OUT OF SPECIFICS
IF (NEAT) 532,532,530
530 WRITE(6,531)
531 FORMAT (8H ANSWER:)
532 CONTINUE
IF(UZB) 18,628,18
18 CONTINUE
WRITE(6,28) M,N,ALPB,DTAU1,DTAN2
28 FORMAT (5H M = ,F10.4,5X, 4HN = ,F10.4,5X, 7HALPB = ,F10.4, 5X,
1 8HDTAU1 = ,F10.4, 5X, BHDTAU2 = ,F10.4)
GO TO 30
628 WRITE(6,629) M,N
629 FORMAT(S5H M = ,F10.4,5X,4HN = ,F10.4)
30 CONTINUE
IF (NUM-NUMPTS) 31,32,32
31 CONTINUE
ALAMOV = ALARMOV 4 DALAMO
NUM = NOM 41
GO TO 821
32 CONTINUR
WRTTE (6, 9)
35 RETURN
" END

SUBROUTINE RNEWT1{(H,N,ALPB,DTAU1,DTAU2, ALAMOV,JACOSH,TTERLG, NEAT)
REAL M, N, M2, N2, MGUESS, NGUESS

DIMENSION A(5,5)

DIMENSTON ALP1D(2), ALP2D(2), ALP3D(2), ALP4D(2), ALP5D(2),
1 ALP6D(2), BET1D(2), BET2D(2), BET3D(2), BET4D(2), BETSD(2),
2 BET6D(2),DEL1D{2), DEL6D(2), DEL7D(2), DEL8D(2), DELID(2),
3 DEL10D(2) :

DIMENSION PHEAD(2), PHEBD ({2}, PHECD(2)

DIMENSION G11D (2}, 612D(2),G21D(2), G22D(2), XJI1D(2), XJI2D(2)
DIMENSTON RHS(5), DELVAR(5), ASTOR®(S)

COMMON HGUESS, NGUFSS, ALPBGU, DTAU1G, DTAU2G

COMMON CD, UZB, UCZB, UCAZB, EU, GU, SY, W, PY, APAR, ETAB, GAHN
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7
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COMMON EPSB, SIG, CPCB, CPCAB
COMMON TCASE
JHTG = 0
NEAT = 0
¢ INITIAL GUESS
1 M = MGUESS
N = NGUESS
ALPB = ALPBGH
DTAU1 = DTAUIG
DTAU2 = DTAU2G
C CALCULATIONS NOT DEPENDING UPON M,N,ALPB,DTAU1,DTAU2
2 CONTINUE
CD2 = CD*CD
UZB2 = UZB%UZB
UCZB2 = UCZB*UCZB

RU2 = EU%EU

GU2 = GU*GU

CSY = COS(SY)

UCAZB2 = UCAZB*UCAZB
S4 = W

CW = 1.0

CH2 = CW*CW
SH? = SWxSW
C CALCULATIONS IN SOME WAY RELEVANT TO M,N,ALPB,DTAU1,DTAU2
CC CALCULATION OF VALUES
ICOUNT = O
WRITE (6, 103)
103 FORMAT (102H TTERATION BEGINS WITH POSSIBL® INTERFERENCE WITH UWIG.
1 PRINT-0UT WILL OCCUR WHEN INTERFERENCE TS MADF)
T CONTINUE
IF({ICOUNT-10) 804,604,803
803 ITERLG = 1

RETUORN
804 ITERLG = 0
M2 = HxH
N2 = N*N
R = (M24N2)%#%0.5
R2 = M24N2
R3 = R2%*R
ALPT = - R2/(4.0%CD2) - UZB2/(2.0%CD2) 4 UCZB2/2.0 4 (EU24GU2)/4.0
ALP2 = H*N/(2.0%CD2) 4 EU*GU/2.0
ALP3 = - (M2~-N2)/(4.0%CD2) 4(EU2-GU2) /4.0
ALPYU = UCZBXCSY*GU 4 UZB%N/CD2
ALPS = UCZB*CSY%*EU - UZB*M/CD2
ALPA = CPCAB*UCAZB2/2.0 4 (ETAB-ALPB)/(GAK-1.0)
BET1 = (UCZB2/2.04(EU24GU2) /#.0) «CPCR
BET2 = EU*GU*CPCB/2.0
BET3 = (EU2-GU2) *CPCR/#.0
RETH = UCZB4*CSY*GU%CPCB
BETS = UOCZB*CSY*EU*CPCB

GO TO (704,705), ICASE

704 BET6 = UCAZB2%#CPCAB/2.0 } (ETAR-ALPB/GAM)/(GAM-1.0)
DEL1 = - ALPB/GAY } BET1
GO TO 708

705 TF(UZB) 706,706,707

706 BET6 = ALP6
NEL1 = -ALPB/GAM 4+ BET1
Go To 708

707 BET6 = UCAZB2%CPCAB/2.0 4 (ETAB-ALPB/GAMN)/(GAH-1.0)
DEL1 = BET1




=08 -

158 708 CONTINUE
159 DEL6 = ~ UZB2/{2.0%CD2) — R2*CH2/(4.0%CD2) + UCAZB2/2.0 +
1 (ETAB-ALPB) / (GAHM-1.0)

160 DEL7 = M%N#CH2/(2.0%CD2)
161 DEL8 = - (M2-N2)%CW2/(4.0%CD2)
162 DELY = UZB*N*CH/CD?
163 DEL10 = - UZB#N#CH/CD2
161 UWIG = UZB/R
CCC KEEPING UWIG<1.0 FOR WILD POINTS
165 IF(JWIG) 904,904,907
166 904 IF (ABS (UWIG)-1.0) 907,905,905
167 905 CONTINUE
168 UWIG = 0.99999999
169 RUF = 0.0001
170 INTERF = 1
171 GO TO 610
172 907 CONTINUE
173 INTERF = 0
174 IF (ABS (UHIG)~-1.0) 504,502,502
175 502 WRITE(6,503)
176 503 FORMAT (115H IT SEEMS THAT U2ZB IS SO LARGE THAT THE TOTAL ORIFICE

1THOTION IS NON-OSCILLATORY. THEORY TS NOT VALID FOR THIS CASE.)
177 NEAT = 0 :

178 RETURN
179 504 CONTINUE

180 RUFP = (R2-UZB2) **0.5

181 610 CONTINUE

182 IF(H) 4,5,5

183 B XK = 1.0

184 GO TO &

185 5 XK = 0.0

186 6 CONTINUE

187 ACMUW = ARCOS (-UWIG)

188 PHEB = 2.0%ACMUW

189 PHEA = - PHEB/2.0 - ATAN(N/M) - XK*PY
190 PHEC = PHEA 4 PHEB

191 CPHEA = COS (PHEA)

192 CPHEB = COS(PHEB)

193 CPHEC = COS(PHEC)

194 C3PHEA = COS (3.0*PHER)

195 C3PHEC = COS(3.0%PHEC)

196 C2PHEA = COS(2.0%PHEA)

197 C2PHEC = COS (2.0%PHEC)

198 SPHEA = SIN (PHEA)

199 SPHEB = SIN (PHEB)

200 SPHEC = SIN (PHEC)

201 S3PHEA = SIN(3.0%PHEA)

202 S3PAFRC = SIN({3.0%*PHEC)

203 S2PHEA = SIN (2.0%PHEA)

204 S2PHEC = SIN(2.0%PHEC)

205 CPCPT1 = COS{PHEC 4 DTAU1)
206 SPCPT1 = SIN (PHEC 4 DTAU1)
207 CPAPT2 = COS(PHEA + DTAU2)
208 SPAPT2 = SIN(PHEA 4 DTAU2)
209 G11 = ( (ALP1-BET1) ®*SPHEC + (DEL1-ALP1) *SPHEA 4 (BET1-DEL1)*%SPCPT1

1 4 (ALP2-BET2) %« (CPHEA/2.04C3PHEA/6.0-CPHEC/2.0~C3PHEC/6.0) +
2 (ALP3-BET3)* (~SPHEA/2.0-S3PHEA/6.04SPHEC/2.04S3PHEC/6.0) 4
3 (ALPU-BETU) % (C2PHEA-C2PHEC) /4.0 4 (ALP5-BETS) *(-S2PHEA+S2PHEC) /6.
4 ALPS5S4PHEB/2.0 + (2.0%PY-PHEB)*BETS5/2.0 }/PY
210 G12 = ( -(ALP1-BET1)*CPHEC 4 (ALP1-DEL1)*CPHEA 4 (DEL1 —BET1) %
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CPCPT1 4+ (ALP2-BET2)* (~SPHEA/2.0 +S3PHEA/6.0 + SPHEC/2.0 -S3IPHEC/
6.0} + (ALP3I-BET3)* (~CPHEA/2.0+C3PHEA/6.04CPHEC/2.0~C3PHEC/6.0) +
{ALPY-BETU) % (S2PHEA-S2PHEC) /4.0 4+ (ALPS5-BETS) #(C2PHEA-C2PHEC) /.0
} ALPU%PHEB/2.0 + (2.0%PY-PHEB)*BET4/2.0 )/PY

G21 = ( (SPAPT2-SPHEA)*ALP6 } (SPHEC-SPAPT2)*BET6 4 (SPHEA-SPHEC)
#DEL6 + (CPHEC/2.04C3PHEC/6.0-CPHFA/2,0-C3PHEA/6.0)%DELT 4 (SPHEA
/2.04+S3PHEA/6.0~-SPHEC /2. 0-S3PHEC/6 .0} *DELS { (C2PHEC-C2PHEA) *
DELY/4.0 4+ ( (2.0%PY-PHEB) /2.0 4 (S2PHEA-S2PHEC)/4.0)%* DEL10 )/
PY

G22 = ( (CPHEA —-CPAPT2)*ALP6 4+ (CPAPT2-CPHEC)*BET6 4+ (CPHEC-CPHEA
) *DEL6 + (SPHEA/2.0-S3PHEA/6.0-SPHEC/2.04S3PHEC/6.0)%DRL7 4
(CPHEA/2.0-C3PHEA/6.0~CPHEC/2. 04C3PHEC/6.0) *DELB + { {(2.0%PY-PHEB
) /2.0 + (S2PHEC-S2PHEA) /4.0 )*DEL9 } (C2PHEC-C2PHEA)*DEL10/4.0 )
/PY

XJ1 = ( (DEL1-ALP1)*(PHEA-PHEC) 4 (BET1-DEL1)*DTAU1 4 2.0%PY*DEL1
+ (SPHEA-SPHEC) % (BET5-ALP5) %2.0 4 (CPHEA-CPHEC) * (ALP4~BETH)*2.0 4
(S2PHEA-S2PHEC) * (BET3-ALP3) 4 (C2PHFEA-C2PHEC) * (ALP2-BET2) ) /(
2.0%PY)

¥J2 = ( (DEL6-BET6)% (PHEA-PHEC) + (ALP6-BET6)*DTAU2 4 2.0%PY*DEL®
+ (SPHEA-SPHEC)*DEL10%2.0 4 (CPHEC-CPHEA)*DEL9%2.0 4 (S2PHRA-

S2PHEC) *DEL8 + (C2PHEC-C2PHEA) *DEL7 )/ (2.0%*PY)

CONTINUE

F1 = EPSB*G12 - EPSB*G22%CW - EPSB*SW2kN#0UZB - (ALAMOV#CW/{2.0xPY)
- SW) *M*CH

2 = - EPSB%(G11 4+ 1.0/GAM) 4 EPSB#G21%CW - EPSB#SW2xM*UZB +
(ALAMOV*CH/ (2.0%PY) -S¥) *N*CW '

F3 = XJ1 - XJ2 4 (GAM-1.0)*SW2%¥R2/4.0

CONTINUE

GO TO (8,9), ICASE

CONTINUFE

F4 = W 4 EPSB*UZB*DTAU1 — EPSB%*R*(1.0-COS (DTAU1))

F5 = W - EPSB*UZB*DTAU2 - EPSB*R¥(1.0-COS (DTAU2))

GO TO 10

IF (UZBY 909,909,910

Fl = 2.0%UZB*ACMUN 4 UZB%DTAU1 4 RUF%(1.04COS(DTAU1)) - UZB*
SIN (DTAU1)

F5 = DTAO2

GO TO 10

F4 = DTAU1

F5 = 2.0%UZB%ACMU¥ - UZB%DTAU2 4 RUF%{1.04COS(DTAU2Z)) 4 UZBx%
SIN({DTAUZ2) - 2.0*%PY*UZB

CONTINUE

CULATION OF DERIVATIVES

ALPID (1) = - M/ (2.0%CD2)
ALP1D(2) = - N/(2.0%CD?2)
ALP1AB = 0.0

ALP2D (1) = N/(2.0%CD2)
ALP2D(2) = M/(2.0%CD2)
ALP2AB = 0.0

ALP3D(1) = ALP1D(1)
ALP3D(2) = - ALP1D(2)
ALP3AB = 0.0

ALPAD(1) = 0.0

ALPU4D (2) = UZB/CD2
ALPU4AB = 0.0

ALP5D{(1) = - UZB/CD2
ALPSD (2} = 0.0

ALP5AB = 0.0

ALP6D{1) = 0.0

ALP6D(2Y = 0.0
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BLPGER = ~ 1.0

BETIDIY = 0.0

BETID{2Y = 0.0

BETIAB = (.0

BETZD(1Y = 0.0

BETZ2D{2} = 0.0

BET2AB = 0.0

RET3ID{(Y = 0.0

BET3D(2) = 0.0

BET3AB = 0.0

BET4D(T) = 0.0

BETUD{(2}y = 0.0

BETUAB = 0.0

BETSD(1) = 0.0

BET5D(2) = 0.0

BET5AB = 0.0

GO TO {(710,711), ICASE
BET6D(1) = 0.0

BET6D{2) = 0.0

BET6AB = - 1.0/ (GAM* (GAM-1.0))
DELID(1) = 0.0 .
DELID(2) = 0.0

DEL1AB = - 1.0/GAH

GO TO 714

IF{(0ZB) 712,712,713
BET6D (1) = ALP6D(1)
BET6D (2} = ALP6D(2)
BET6AB = ALP6AB
DELID(1) = 0.0

DELID(2) = 0.0

DEL1AB = -1.0/GAH

GO TO 714

BET6D(1) = 0.0

BET6D({2) = 0.0

BETHAB = -1.0/ (GAR* (GAK-1.0))
DEL1D (1) = BET1D(1)
DEL1D(2) = BET1D(2)
DEL1AB = BETI1AB
CONTINUE

DEL6D (1} = ALPID{1)%CW2
DEL6D(2) = ALP1D(2)*CH2
DEL6AB = ALP6AB

DELTD (1) = ALP2D {1)*C¥2
DELTD(2) = ALP2D(2) *CH2
DELT7aB = 0.0

DEL8D {1y = ALP3D (1)*CH2
DELBD {2y = ARLP3D({(2) *CW2
DELS8AB = 0.0

DELYD (1) = 0.0

DELSD{2}y = ALPUD(2) *C¥
DEL9AB = 0.0

DEL10OD(1} = ALPS5D(1)*C¥W
DELIOD{2}y = 0.0

DELI0A = 0.0

HH = H/R

RH = N/R

HEIGH = -~DZB*RA/RZ
GEIGH = - UZB*RE/R2Z

PHEBD (1) = 2.0%UHIGH%R/RUF
PHEBD(2) = 2.0%UWIGN*R/RUP

=100~
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PHEAD(1) = - PHEBD{1)/2.0 4 N/R2
PHEAD(2) = - PHEBD(2)/2.0 - M/R2
PHECD (1) = PHEAD (1) 4 PHEBD(1)
PHRCD (2) = PHEAD(2) + PHEBD(2)
CONTINUE

G11AB = (DELTAB*SPHEA - DEL1AB*SPCPT1) /PY

G11DTt = ( (BET1-DEL1)*CPCPT1} /DY

G11DT2 = 0.0

G12AB = (-DEL1ABXCPHEA + DEL1AB*CPCPT1) /PY
G12DT1 = (- (DEL1-BET1) *SPCPT1) /PY

G12DT2 = 0.0

G21AB = (ALPGAB* (SPAPT2-SPHEA) 4 BET6AB* (SPHFC-SPAPT2) + DEL6AB*
1 (SPHEA-SPHEC) )/PY

G21DT1 = 0.0

G21DT2 (ALP6-BET6) *CPAPT2/PY

G22AB = (ALP6AB* (CPHEA~CPAPT2) 4 BRTHAB* (CPAPT2~CPHEC) 4 DEL6ABX
1 (CPHEC-CPHEA) )/PY

G22DT1 = 0.0

G22DT2 (ALP6%SPAPT2 - BET6*SPAPT2 )/PY

XJ1AB = ( (PHEA-PHEC-DTAU142.0%PY)%DEL1AB )/ (2.0%PY)

XJ1DT1 { BET1-DEL1) / (2.0%PY)

XJ1DT2 = 0.0

XJ2AB = ( PHEA* (DEL6AB-BET6AB) + PHEC#* (BRT6AB-DEL6AB) }+ DTAU2#(
1 ALPHAB-BET6AB) + 2.0%PY*DEL6AB) /(2.0%PY)

XJ2DT1 = 0.0 v

LJ2DT2 = (ALP6-BET6)/(2.0%PY)

J =1

o

[}

2 CONTINUE

G11Da = ( (ALP1D{J)-BET1D {J))*SPHEC 4 (ALP1-BET1) *CPHEC*

1 PHECD (J) 4+ (DEL1D(J)-ALP1D(J)) *SPHEA + (DEL1-ALP1) *CPHEA*PHEAD (J)

2 4 (BET1D(J)~DEL1D(J)) «SPCPT1 + (BET1-DEL1) *CPCPT1*PHECD (J) +

3 (ALP2D(J) -BET2D{J))* (CPHEA/2.04+C3PHEA/6.0-CPHEC/2.0~-C3PHEC/6.0) +

4 (ALP2-BET2) % (~-SPHEA*PHEAD (J) /2.0-3.0%S3PHEAXPHEAD (J) /6.0+SPHEC*

5 PHECD (J) /2.0 +3.0%S3PHEC%*PHECD (J) /6.0) + (ALP3D(J)~BET3D(J)) * (-

6 SPHEA/2.0-S3PHEA/6.04SPHEC/2.04S3PHEC/6.0) ) /PY

G11DB = ( (ALP3-BET3)* (~CPHEA*DHEAD (J) /2.0~3.0%C3PHEA*PHEAD (J)
/6.0 + CPHEC#PHECD (J) /2.043.0%C3PHEC*PHECD (J) /6.0) 4 (ALP4D(J) -
BETU4D (J) ) * (C2PHEA-C2PHEC) /4.0 + {ALPU—BETY)* (-2.0%S2PHEA*PHEAD (J)
4$2.0%S2PHEC*PHECD (J)) /4.0 4+ (ALPSD (J)-BET5D(J)) *(-S2PHEA+S2PHEC)
/4.0 + (ALPS5-BETS)* (-2.0%C2PHEA*PHEAD (J) 4 2.0%C2PHEC%PHECD (J))
/4.0 4+ ALDPSD (J) *PHEB/2.04ALP5%PHEBD (J) /2.0 +BETS5D (J) *PY-BETSD (J) *
PHEB/2.0 -~ BETS*PHEBD (J) /2.0 ) /PY

511D (J) = G11DA 4 G11DB

G12DA = { (BETID (J)-ALP1D (J))*CPHRC - (BET1-ALP1) *SPHEC*PHECD (J)
+ (ALP1D(J)-DEL1D (J)) *CPHEA- (ALP1-DEL1) *SPHEA*PHEAD (J) + (DEL1D(J
) ~BET1D (J) ) «CPCPT1 — (DEL1-BET1) *SPCPT 1%PHECD (J) 4 (ALP2D(J)-BET2D
(J)) * (~SPHEA/2.04S3PHEA/6.04SPHEC/2.0-S3PHEC/6.0) + (ALP2-BET2)*
(~CPHEA*PHEAD (J) /2.043.0%C3PHEA*PHEAD (J) /6.0 +CPHECXPHECD (J) /2.0
- 3.0%C3PHECXPHECD (J) /6.0) + (ALP3D(J)-BET3D (7)) *(~CPHEA/2.0+
C3PHEA/6.0 +CPHEC/2.0-C3PHEC/6.0) ) /PY

G12DB = ( ( ALP3-BET3)* (SPHEA*PHEAD (J) /2.0-3.*S3PHEA*PHEAD (J) /6.0
- SPHEC*PHECD (J)/2.0+3.0%S3PHEC*PHFECD (J) /6.0) 4 (ALPU4D (J) =BETUD (J) )
* (S2PHEA-S2PHEC) /4.04 (ALPU~BETH) * (2. 0%C2PHEA*PHEAD (J) -2.0%C2PHEC*
PHECD (J)) /4.0 4 (ALPSD (J)~BETSD(J)) * (C2PHEA-C2PHEC ) /4.0 4 (ALP5-
BETS5) % {=2.0%S2PHEA%PHFAD (J) $2.0%S2PHEC*PHECD (J) ) /4.0 + ALPU4D(J} =
PHEB/2.0 4+ ALPU*PHEBD (J) /2.0 4 BETUD(J}*PY-~ BETLD (J) *PHEB/2.0 -
BET4%PHEBD (J) /2.0 ) /PY

G12D(J) = G12DA + G12DB

G21DA = { ALP6D (J)* (SPAPT2-SPHEA) & ALP6%* (CPAPT2%PHEAD(J) ~CPHEA*

1 PHEAD(J)} 4 BET6D (J}* (SPHEC-SPAPT2) } BRT6* (CPHEC*PHECD (J) ~CPAPT?2

[o2NRS 1 B < UURE b QY




342
343

gy

345
346

347

48
349

350

351
352
353
354
355
356
357
358
359
360
361
362
163
l6h
165
366
367

AL

~102-
2 #*PHEAD{J}) 4 DELG6D {J}* (SPHEA~-SPHEC) } DEL6* (CPHEA*PHEAD(J)~CPHEC*

3 PHECD{J)} + DELTD (J) % (CPHEC/2.04C3PHEC/6.0-CPHEA/2.0-C3PHEA/6. 0)
4 4 DELT7% {~SPHECKPHECD (J} /2. 0-3.0%S3PHEC*PHECD (J) /6.04+SPHEA*PHEAD
5(J) /2.0 % 3.0%S3PHEA*PHEAD{J}/6.0} }/PY

G21DB = { DELBD (J) % (SPHEA/2.04S3PHEA/6.0-SPHEC/2.0~S3PHEC/6.0) 4
1 DEL8% (CPHEA*PHEAD (J}/2.043.0%CPHEA*PHEAD (J) /6.0-~CPHEC*PHECD (J} /2.
2 - 3.0%C3PHEC*PHECD (J) /6.0) 4 DELYD {(J) * (C2PHEC-C2PHEA) /4.0 4 DEL9%
3 (=2.0%S2PHEC*PHECD (J) 32.0%S2PHEA*PHEAD(J)) /4.0 + DEL10D (J)*( (

4 2.0%PY-PHEB) /2.0 + (S2PHEA-S2PHEC) /4.0) + DEL10%{-PHEBD(J) /2.0 4
5 (2.0%C2PHEA*PHEAD{J) -2.0%C2PHEC*PHECD (J) ) /4.0) )/PY

G21D(J) = G21DA 4 G21DB

G22DA = { ALP6D (J)*(CPHEA-CPAPT2) 4 ALP6%(~SPHEA}$SPAPT2) %«PHEAD (J)

+ BET6D (J) * (CPAPT2-CPHEC) + BET6* (~SPAPT2*PHEAD (J) $}SPHEC*PHECD (J)

y 4+ DEL6D (J) % (CPHEC-CPHEA) + DEL6% (~SPHECXPHECD (J) 4SPHEA*PHEAD (J

)} 4+DEL7D(J)%( SPHEA/2.0-S3PHEA/6.0-SPHEC/2.0 +S3PHEC/6.0) + DEL7

* (CPHEA*PHEAD (J) /2.0-3.0%C3PHEA*PHEAD {J) /6.0- CPHEC*PHECD (J) /2. 04

3.0%C3PHEC*PHECD (J) /6.0y 4 DELBD(J)% (CPHEA/2.0~C3PHEA/6.0-CPHEC/

2.04C3PHEC/6.0) ) /PY
G22DB = ( DEL8% (~-SPHEA*PHEAD (J) /2.043.0%S3PHEA*PAEAD (J) /6.04SPHEC
1 %PHECD (J) /2.0-3.0%S3PHEC#PHECD (J) /6.0) + DELOD (J)*( (2.0%PY-PHEB)
2 /2.0 4 (S2PHEC-32PHEA) /4.0) + DELO%(-PHEBD (J) /2.0 4(2.0%C2PHECx
3 PHECD (J) -2.0%C2PHEA*PHEAD (J)) /4.0)+ DEL10D (J) * (C2PHEC-C2PHERA) /8.
4 } DEL10% (~2.0%S2PHEC*PHECD (J) + 2.0%S2PHEA*PHEAD(J)) /4.0 - ) /PY

G22D(J) = G22DA 4 G22DB 1

XJi1DA = ( PHEAD(J)* (DEL1-ALP1) 4 PHEA* (DEL1D(J)-ALP1D(J)) +
1 PHECD (J) % (ALP1-DEL1) 4 PHEC%(ALP1D(J)-DEL1D(J)) + DTAU1*(BET1D (J)
2 -DEL1D(J))+ 2.0%PY#DEL1D(J) + 2.0%(CPHEA%PHEAD (J) —CPHEC*PHECD (J) )
3% (BET5-ALP5) 4 2.0% (SPHEA-SPHEC) * (BETSD (J) —~ALP5D (J)) 4 2.0*(-SPHEA
4 *PHEAD (J) +SPHEC*PHECD (J))* (ALP4~BETU) 4 2.0% (CPHEA-CPHEC)* (

5 ALPUD {J) ~BETUD(J)) )/ (2.0%PY)

XJ1DB = {  2.0% (C2PHEA*PHEAD (J) ~C2PHEC*PHECD (J) ) * (BET3-ALP3) + (
1 S2PHEA-S2PHEC) * (BET3D (J)~ALP3D (J)) + 2.0%(-S2PHEA*PHEAD (J) $S2PHEC
2 %PHECD (J)) % (ALP2-BET2) + (C2PHEA-C2PHEC) * (ALP2D(J)~-BET2D(J)) )}/
3 (2.0%PY)

XJ1D (J) = XJ1DA 4 XJ1DB

XJ2DA = ( PHEAD(J)#*(DEL6-BET6) 4 PHEA% (DEL6D(J)-BET6D(J)) +
1 PHECD (J) * (BET6-DEL6) + PHEC* (BET6D (J) -DEL6D(J)) + DTAU2* (ALPED (J)
2 ~BET6D(J)) + 2.0%PY%DEL6D(J) + 2.0% (CPHEA*PHEAD (J)~CPHEC*PHECD (J)
3 }%DEL10 } 2.0%(SPHEA-SPHEC)*DEL10D (J) )/ (2.0%PY)

XJI2DB = ( —2.0%(-SPHEA*PHEAD(J) + SPHEC*PHECD(J))*DEL9 - 2.0%(

1 CPHEA-CPHEC) *DELID(J) + 2.0% (C2PHEA*PHEAD(J) - C2PHEC*PHECD (J))*
2 DEL8 4 (S2PHEA-S2PHEC)*%DEL8D(J) + 2.0%(-S2PHEC*PHECD(J) + S2PHEA*
3 PHEAD (J) ) *DEL7 4 (C2PHEC-C2PHEA)*DEL7D{J) ) /{2.0%*PY)

XJ2D(J) = XJ2DA 4 XJ2DB

IP(I-1) 13,13,14

SN N -

CONTINUE
G11H = G11D(J)
G12H = G12D(J)
G218 = G21D(J)
G22M = G22D{J)
XJ1H = XJ1D(J)
XJI2H = XJ2D(J)
g = 2

GO TO 12
CONTINUE

G11N = G11D(J)
G128 = G12D{J)
G210 = 621D (3
G228 = G22D(J}
XITH = XJI1D(J)




3168
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
3138
3189
390
391
392
393
394
3195
396
397
398
399
400

401

402
403
404
405
406
407
408
409
410
111
412
413

15

817

16

17
917

918

18

-103-
XJI2N = XJ2D(J)

CONTINUE
FiM = EPSB*G12M- EPSB*G22M*CH - (ALAMOVACH/(2.0%PY)~SW)*CH
"IN = EPSB#G12N - EPSB#G22N%CW - EPSB*SW2%072B

F1AB = EPSB*G12AB — EPSB%*G22AB¥CW

FIDT1 = EPSB*G12DT1 - EPSB*G22DTI1*CH

FiDT2 = EPSB%G12DT2 - EPSB#G22DT2#CH

F2M = - EPSB*G11M 4 EPSB*G21M*CW - EPSB*SW2*UZB

F2N = - EPSB*G11N 4 EPSB*G21N*CW 4 (ALAMOV*CH/ (2.0%PY)-SW)*CH
F2AB = - EPSB%G11AB 4 FPSB#G21AB%CH

F2DT1 = - EPSB*G11DT1 { EPSB*G21DT1*CW

F2DT2 = - EPSB*G11DT2 + EPSB*G21DT2*CW

F3M = XJ1M - XJ2H¥ 4 (GAM-1.0) #SW2%2.0%xM/4.0

F3N = XJIN - XJ2N 4 (GAM-1.0) *SH2*2,0%N/4.0

F3AR = XJ1AB - XJ2AB

F3DT1 = XJ1DT1 - XJ2DT1

F3DT2 = XJ1DT2 - XJ2DT2

CONTINUE

60 TO (16,17), ICASE

CONTINUE

F4M = —~FEPSB*RM* (1.0-COS (DTAU1))

F4N = -EPSB*RN* (1.0-COS(DTAU1))

F4AB = 0.0

FUDT1 = EPSB*UZB - EPSB*RXSIN(DTAU1)

FUDT2 = 0.0

F5M = -EPSBxRM* (1.0-COS (DTAU2))

F5N = -EPSB*RN* (1.0-COS(DTAU2))

F5AB = 0.0

F5DT1 = 0.0

FPS5DT2 = —EPSB*UZB - EPSB*R%SIN(DTAU2)

60 TO 18

IF (DZB) 917,917,918

F4M = 2.0%UZB*UWIGH¥R/RUF 4+ R*RM* (1.04COS (DTAUT))
1 /RUF

FUN = 2.0%UZB*UWIGN*R/RUF 4 R*RN*(1.04COS (DTAUT))
1 /RYUF '

F4AB = 0.0

FUDTY1 = UZB-RUF%SIN(DTAU1) - UZB%COS (DTAU1)

F4DT2 = 0.0

FSM = 0.0

F5N = 0.0

FSAB = 0.0

FSDT1 = 0.0

P5DT2 = 1.0

GO TO 18

UM = 0.0

F4N = 0.0

F4AB = 0.0

PUDTT = 1.0

F4DT2 = 0.0

FSM = 2.0%UZB*UWIGH*R/RUF + R*RM%*(1.04COS (DTAU2))
1 /RUF v

FS5N = 2.0%UZB*UHIGN*R/RUF } R*RN*(1.04COS (DTAU2))
1 /RUF

F5AB = 0.0

FS5DT1 = 0.0

FS5DT2 = -UZB -~ RUF*SIN(DTAU2) 4 UZB®COS (DTAU2)

CONTINUE

aA(l, 1) = Fid

A(1,2) = FIN
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424 A{1,3} = F1AB

425 A{1,4) = F1DT1

126 A(1,5) = F1DT2

427 A(2,1) = F2H

428 A{2,2) = F2N

429 A(2,3) = F2AB

430 A(2,4) = F2DTT

331 A(2,5) = F2DT2

432 A{3,1) = F3H

433 A(3,2) = F3N

n3 A(3,3) = F3AB

435 A(3,4) = F3pT1

436 A(3,5) = F3DT2

437 A(4,1) = FuM .

438 A(4,2) = FuUN

439 A{l4,3) = FUAB

440 A(4,4) = F4DTI

g A(4,5) = FUDT2

4y2 A(5,1) = F5H

443 A(5,2) = FSN

n4y A(5,3) = F5AB

445 A{5,4) = F5DT1

4146 A(5,5) = F5DT2

uy7 RHS (1) = - F1

448 RHS (2) = - F2

449 RHS (3) = - F3

450 RAS {U) = -~ F4

451 RHS{5) = - F5

452 ARITE (6,818) ICOUNT,M,N,ALPB,DTAU1,DTAU2

453 818 FORMAT(11H ITFRATION-,I2,7H: M = ,E13.6,2X,4H8 = ,E13.6,2X,
1 JHALPB = ,E13.6,2¥,8d4DTAU1 = ,E13.6,2%X,8HDTAU2 = ,E13.6)

n5y WRITE (6,819) F1,F2,F3,F4,F5

455 819 FORMAT (6H F1 = ,E13.6,2X%X,5HF2 = ,E13.6,2X,5HF3 = ,E13.6,2X,5HF4 =
1,E13.6,2%,50F5 = ,E13.6)

156 IF (INTERF) 119,120,119

457 119 WRITE (6,906) UWIG

458 906 FORMAT(53H VALUE OF UWIG PREDICTED FROM PREVIOUS TTERATION WAS ,
1 E13.6,36H, BUT VALUE USED HERE WAS 0.99999999)

159 120 CONTINUE

460 CALL CRAMER (A, DETERHN)

461 XJACO = DETERHM

462 YRITE (6,919) XJACC

463 919 FORMAT (12H JACOBIAN = ,E13.6)

L6Y TF (ABS (XJACO) -~ 0.0000000001) 19,19,20

465 19 JACOSH = 1

466 RETHRN

467 20 JACOSH = 0

468 DO 922 3 = 1,5

n69 Do 21 1T = 1,5

470 ASTORE(I) = A(I,J)

471 A(I,J) = RHS(I)

n72 21 CONTINDE

473 CALL CRAMER (A, DETERH)

574 DELVAR(J) = DETERM/XJACO

475 po 921 1 = 1,5

176 A{T,J) = ASTORE{I}

477 921 CONTINUE

478 927 CONTINUE

579 M = M 4 DELVAR (1)

480 H

i

N 4 DELVAR (2)



481
482
483
484
485
486
487
488
489
490
491
492

493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
H09
510
511
512

513
514
515
516
517
518
519
520
521

522
523
524
525
526

527
528
529
530
531
532
533

534
535

22

23
24
25
26
27
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ALPB = ALPB 4 DELVAR(3)

DTAUT = DTAUV 4 DELVAR (4)
DTAT2 = DTAU2Z 4 DELVAR (5)
CONTINUE

IF (ABS (F1)-0.0001) 23,23,27
TF (ABS (F2)-0.0001) 24,24,27
IF (ABS (F3)=0.0001) 25,25,27
IF (ABS (F4)-0.0001) 26,26,27
IF {(ABS (F5)-0.0001) 28,28,27
CONTINUE

ICOUNT = ICOUNT 4 1

GO TO 3

¢ CHECKING SMOOTH CONVERGENCE

28
29
30
31
32
33
34
35
36
37
38
39

49

41

141

42
43
Ui
45
46
47

48

49
50

IF (ABS (M) - 0.000001) 30,29,29

IF (ABS (DELVAR (1) /M) - 0.01) 30,30,38

TF (ABS (N) - 0.000001) 32,31,31

IF (ABS (DELVAR (2) /N) - 0.01) 32,32,38

IF (ABS (ALPB) - 0.000001) 34,33,33

IF (ABS (DELVAR (3) /ALPB) - 0.01) 34,34,38
IF (ABS (DTAU1) - 0.000001) 36,35,35

IF (ABS (DELVAR (4) /DTAU1) -~ 0.01) 36,36,38
IF (ABS (DTAU2) - 0.000001) 40,37,37

IF (ABS (DELVAR (5) /DTAU2) - 0.01) 40,40,38
WRITE (6,39)

FORMAT (50H CONVERGENCE TOO RAPID FOR ONE VARTABLE, TRY AGAIN)
ICOUNT = ICOUNT 4 1

G0 TO 3

CONTINUE

IF(JWIG) 41,u1,42

JHIG = 1

ICOUNT = 0

WRITE (6, 141)

FORMAT {95H TTERATION STARTED AGAIN USING PRRVIOUS VALUES, THERE TS
1 NOW NO POSSTBLE INTERFERENCE WITH UWIG)

GO TO 3

CONTINUE

IF(DTAUT) 47,44, 44
IF (DTAU2) U47,45,45

IF (DTAU1-PY) U6,U46,47

IF (DTAU2-PY) 49,489,047

NEAT = 0

WRITE (6,48)

FORMAT ( 83H AT LEAST ONE VARIABLE IS OUTSIDE OF ALLOWABLE RANGE, B
1UT CALCULATIONS APPEAR BELOW)

60 TO 50

NEAT = 1

CONTINUFE

RETURN

END

SUBROUTINE RNEWTZ2 (M,N,ALAMOV,JACOSH,ITERLG,KEAT)

REAL K, N, M2, N2, HGUESS, NGUESS

COMMON HMGUESS, NGUESS, ALPBGU, DTAU1G, DTAU2G

COHHON CD, U©UZB, UCZB, UCAZB, EU, GU, SY, W, PY, APAR, ETAB, GAH
COMMON EPS5SB, SIG, CPCB, CPCAB

COHHOR ICASE

HEAT = O

C INITIAL GUESS

1

CONTINUE
# = HMGUESS
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536 N = NGUESS
C CALCULATIONS NOT DEPENDING UPON H,N

537 2 CONTINUE

538 CD2 = CD%CD

539 UCZB2 = UCZBXUCZB

540 EU2 = EU%ED

541 GU2 = GU*GU

542 CSY = COS(SY)

543 UCAZB2 = UCAZB*UCAZB

544 SH = SIN (W)

545 CW = COS (W)

546 CPCBF = 1.0-CPCB

547 CPCABF = 1.0-CPCAB

548 XF1 = (UCZB2 4 (EU24GU2)/2.0)*CPCBF 4 UCAZB2%* (ABS (CH)) *CPCABF

549 XF2 = (EU2-GU2) «CPCBF/3.0

550 XF3 = 2.0*EU*GU*CPCBF/3.0

551 XFl4 = PY*UCZB*GU*CSY* (CPCB41.0) /2.0

552 XF5 = PY#UCZB%*RU%CSY% {CPCB41.0) /2.0

C CALCULATIONS IN SOHME WAY RELEVANT TO H,N
CC CALCULATION OF VALUES

553 ICOUNT = 0

554 3 CONTINUE

555 IF (ICOUNT-10)5,5,4

556 4 ITERLG = 1

557 RETURN

558 5 ITERLG = 0

559 M2 = MM

560 N2 = N*N

561 R2 = M24N2

562 R = R2¥%0.5

563 M3 = M%M2

564 N3 = N*N2

565 R3 = R*R2

566 R4 = R2%R2

567 CWF = 1.0 4 (ABS(CHW))*%3

568 ALAMOF = ALAMOV#CY - 2.0%PY*SW

569 F1 = EPSB*2,0*CWF*N*R/ (3.0%CD2) - EPSBR*N*XF1/R 4 EPSB*(3.0%N/(2.0%
1 R) - N3/R3)%XP2 }{ EPSB%M3%XF3/R3 4 EPSB#XPY4 — 0.S5*ALAMOF*CW*M

570 F2 = EPSB*2,0%CWF*M*R/ (3.0%CD2) - EPSB*M*XF1/R - EPSB*(3.0%H/(2.0%

1 R) - M3/R3)*XF2 | EPSB*N3*%XF3/K3 - EPSB*XF5 - EPSB*PY/GAH 4 0.5%
2 ALAMOF*CH%N
CC CALCULATION OF DERIVATIVES

571 104 CONTINUE
572 RH = M/R
573 RN = H/R
574 FiM = EPSB¥2.0%CWF*N*¥RM/(3.0%CD2) 4 EPSB*N*XF1*RM/R2 4 EPSB%*(-3.0%

1 NxRM/(2.0%R2) 4 3.0%N3%RM/R4) «XF2 4 EPSB*3.0%M2%XF3/R3 - EPSB*¥3.0
2 ®M3*RM*XF3/R4 - 0.5% (ALAHOF) %CW

575 FIN = EPSB*2.0%CWF* (R$N*RN) /(3.0%CD2) - EPSB*XF1/R 4 EPSB*N*XF1%*RN
1 /R2 + EPSB#(3.0/(2.0%R) - 3.0%N#*RN/(2.0%R2) - 3.0%N2/R3 4 3.0%N3%
2 RN/RU4) %XF2 - EPSB*3.0%M3%xRN%XF3/RU

576 F2H = EPSB#2.0%CWF* (REM*RH) /(3.0%CD2) - EPSB*XF1/R 4 EPSPB*H*RM*XF1
1 /R2 ~ EDPSBx(3.0/(2.0%R} — 3.0%M%RM/(2.0%R2) - 3.0%HM2/R3 4 3.0%M3x%
2 RH/RU) #XF2-EPSBx3.0%N 3IxRHxXF3 /Rl

577 F2N = EPSB#*2.0%CHFP¥M*RN/(3.0%CD2) + EPSB*H*RN*XF1/R2 - EPSB* (-3.0%
1 H&RN/(2.0%R2) + 3.04«M3%RN/R4)=XF2 4 EPSB#3.0%N2¢XF3/R3 - EPSB*3.0
2 #N3*RE*XF3/R4 + 0,5%#ALANOF=*CH

578 WRITE (6,105) TCOUNT,H,N

579 105 FORMAT (11H ITERATION-,T2,9H: # = ,F13.6,2%,8HN = ,E13.6)

580 WRITE (6,6} F1,F2



551

582
83
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599

600
601
602
603
604
605
6506
607
608
509
£10
6511
6512
£13

614
515
616
517
518
6519
420
621
622
623
bh2U
625
626
627
628
529
530
631
H32
£33
H34
35
£136
637

6 FORMAT (6H F1 =
C CHFCKING JACOBIAN

7 CONTINUE

XJACO = FIM*F2N -

HRITE (6,8) XJACO
3 FORMAT (12H JACOBIAN = ,E13.6)

IF (ABS (XJACO) - 0.0000000001) 9,9,10
9 JACOSHY = 1

LE13.6,2X,5HF2 = ,E13.6)

FIN*¥F2H

RETURN
10 JACOSH = 0
DELK = (F2%F1N - F1%F2XN) /XJACO

DELN = (FP1%F2M - F2xF1M) /XJACO
M = M 4+ DELM
N = N 4+ DELN

11 CONTINUE

IF (ABS(F1) - 0.000% 12,12,13
12 IF(ABS (F2) - 0.0001) 14,14,13
13 CONTINUE

ICOUNT = ICOUNT 4 1

GO TO 3

C CHECKING SMOOTH CONVERGENCFE
14 CONTINUE
IF (ABS(¥) - 0.000001) 16,15,15
15 IF (ABS(DELM/M) - 0.01) 16,16,18
16 IF (ABS(N) - 0.000001) 20,17,17
17 IF(ABS(DELN/N) - 0.01) 20,20,18
18 CONTINUE
WRITE (6, 19)
19 FORMAT (50H CONVERGENCE TOO RAPID FOR ONE VARIABLE,
ICOUNT = ICOUNT + 1
G0 TO 3
20 CONTINUE
NEAT = 1
RETURN
END

SUBRCUTINE CRAMER (A, DETERHM)

REAL ¥, N, M2, N2, MGUESS,

DIMENSTON A(5,5)

COMMON MGURSS, NGUESS, ALPBGU, DTAU1G, DTAU26G

COMMON CD, UZB, UDCZB, UCAZB, EU, GU, SY, W, PY,

COMMON EPSB, SIG, CPCB, CPCAB

COMMON ICASE

JI61 = 0

SUN1 = 0

DO 100 I

JI62 = 0
0
2

NGUESS

SN2 =

DO 90 I

IF(I2 - 1
50 JIG3

SUM3

DO 80 T 1,5

IF(I3 - I1) 51,80,51

0
= 1,5
1)y 50,90,50

]

0
0.0
3 =

51 IF(I3 - T2) 52,80,52
52 JIGH = O

SUME = 0.0

po 70 TH = 1,5
. IF{I4 - I1) 53,70,53
53 IF(I4 - I2) 54,70,54

APAR,
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TRY AGATN)

ETAB, GAM




38
539
HR0
6l
Gi2
643
6ul
6545
6546
647
648
Al9
A50
651
652
653
654
655
656
657
558
659
H60
661
h62
663
664
665
h66
r67
668
669
670
671
672
673
674
675
676
677
678
AT9
680

56

57

58
59
60

61

62

63
70

71

72

73
80

81

83
30

91

FENTRY

IF (T4 - I3} 55, 70,55
po 60 I5 = 1,5

TF(I5 - T1) 56,60,56
IF(I5 - 12y 57, 60, 57
IF{I5 - T3} 58,60,58
IF(I5 - T4) 59,60,59
SUM5 = A (I5,5)

CONTINUDE

IF(JIGH) 62,61,62

SIGN = 1.0

JIiclh = 1

G0 TO 63

SIGN = - 1.0

JIGE = 0 )
SURY = SUMU } SIGNxA{I4,H4) %xSUNDS
CONTINUE

IF (JIG3) 72,71,72

SIGN = 1.0

JIG3 = 1

GO TO 73

SIGN = - 1.0

JIG3 = 0

SUM3 = SUM3 } STIGN#A(I3,3)%SUNL
CONTINUOE

IF(JIG2) 82,811,872

SIGN = 1.0

JIG2 = 1

G0 TO 83

SIGN = - 1.0

JIiG2 = 0

SUM2 = SUM2 4 SIGN%A(I2,2)%SUH3
CONTINUE

IF(JIG1) 92,91,92

SIGN = 1.0

50 TO 93

SIS = - 1.0

JIGT = 0

SUX#1 = SUOHT 4 SIGNxA{I1,1)%SUH2
CONTINUE

DETERHA = SUOM1

RETURN

END
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